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ABSTRACT 
Inhomogeneous electric field induces internal stress in 

flexoelectric materials, which is known as the converse 

flexoelectric effect. The atomic force microscope (AFM) probe 

can be applied to actuate the flexoelectric patch laminated on 

flexible structures and, in turn, induce structural vibrations. In 

this study, multiple actuators (i.e., combination of multiple AFM 

probes and flexoelectric patches) are used to suppress the 

vibration of an elastic cantilever beam. The displacement of the 

beam under control is obtained by superposition of a 

mechanical force induced part and an actuator induced part. The 

optimal actuator positions are selected when the minimal tip 

displacement of the cantilever beam is achieved. In case studies, 

only three actuators are used and only first three beam modes 

are considered. Under resonance conditions where only one 

mode participates, the optimal positions are obtained and they 

only depend on the relationship between actuation factor and 

actuator’s position. The influence of the patch length is 

discussed, followed by the analysis of control voltages applied 

to actuators. When the control voltage is so small as to the 

induced displacement is far less than that induced by the 

mechanical force, the optimal actuation positions do not vary 

with the voltage magnitude; while when the voltage is relatively 

large the actuators keep adjusting their relative optimal 

positions with respect to the control voltage and the system 

becomes unstable. Furthermore, as long as the control voltage 

is relatively small below the stability threshold, the optimal 

positions do not change as the position where mechanical force 

placed along the beam. Under the small voltage condition, a 

smooth relationship between optimal positions and vibration 

frequency is obtained. There are four jump points of optimal 

positions and they are related to the tip displacement-actuator 

position curves under different frequencies. This study serves 

as the foundation of flexoelectric vibration control with multiple 

AFM/flexoelectric actuators on flexible structures. 

INTRODUCTION 
Precision actuation and active vibration control based on 

smart materials has long been the focus of smart structures for 

years. According to the converse flexoelectric effect, where the 

electric field gradient induces stress inside the materials [1-3], 

flexoelectric materials can be applied to precision actuation and 

vibration control of flexible structures. The flexoelectricity has 

been, both theoretically [4-7] and experimentally [8-11], studied 

over the past decades. Recent years, flexoelectric sensors have 

been evaluated on various structures, i.e., cantilever beams [16], 

rings [12-14], cylindrical shells [15], etc. and its sensing effect 

was compared with that induced by piezoelectric materials [14]. 

Based on the cantilever beam model, theoretical flexoelectric 

signals were compared favorably with the experimental results 

[16]. Furthermore, the effect of static flexoelectric actuation by 

an atomic force microscope (AFM) probe was also evaluated 

[17]. 

Cantilever beam models are probably the most fundamental 

structure in engineering applications, such as wings, antennas, 

decks, robot arms, etc. Basic dynamics behaviors of cantilever 

beams have been thoroughly studied [18]. Comparing with 

single actuation and control, multiple actuators’ control is 

probably more effective and versatile. This has been proved by 

pervious work on piezoelectric based multiple actuators [19-21] 

and studies on distributed sensing and actuating systems 

[22,23]. However, control effectiveness of multiple flexoelectric 

actuators has not been explored. In this study, multiple 

actuators are applied to control the vibration of an elastic 

cantilever beam, in which each actuator is consist of an AFM 

probe and a flexoelectric patch laminated on the beam surface. 

Considering the collaboration and interference among actuators, 
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their optimal positions are evaluated with regard to several 

system parameters, i.e., patch length, amplitude of control 

voltage, position of the external mechanical force and external 

excitation frequency. Theoretical derivations of the multi-

AFM/flexoelectric patch model are presented first, followed by 

evaluations of those system parameters  in case studies. 

ACTUATION OF FLEXOELECTRIC PATCHES 

A cantilever beam model, shown in Fig.1, is used to 

evaluate the optimal control positions of multiple AFM probes, 

where coordinates z and x respectively denote the transverse 

and longitudinal directions; L is the length; b is the width and h 

is the thickness of the cantilever beam. Assume that n 

flexoelectric patches of width L
a
 and n AFM probes of tip radius 

R are applied as actuators to control the beam vibration. Also, h
a
 

is the thickness of the flexoelectric patches; 
*

ix  indicates the 

position of i-th probe and a

i  is the actuation voltage applied 

to the i-th probe. 

Figure 1. The cantilever beam model with multiple AFM control 

probes and flexoelectric patches. 

Note that the beam thickness h is much thicker than that of 

the flexoelectric patch h
a
 and h

a
 is much greater than the AFM 

probe radius R, i.e., R≪ h
a≪ h. The flexoelectric patches need to 

be actuated by an inhomogeneous electric field, which is 

generated by AFM probes here. Recall that this study focuses 

on the optimal positions of these multi-probes, thus the position 

information is emphasized throughout. When actuation voltage 
a

i  is applied between the electrode of the i-th flexoelectric 

patch and i-th AFM probe, the transverse electric field between 

them can be defined by Abplanalp’s approximate [24,25] as 
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where Ez denotes the electric field strength in the transverse 

direction. According to the converse flexoelectric effect, the 

gradient of the electric field inside the flexoelectric material 

induces the stress and the normal stress in the longitudinal 

direction can be expressed as [17] 
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where a

xxT  denotes the longitudinal s tress induced by the 

actuators. The converse flexoelectric coefficient 12 is defined 

as the ratio of longitudinal induced stress to the transverse 

gradient of transverse electric field. The membrane force of the 

flexoelectric patch can be calculated by integrating the stress 

through the patch thickness as  
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where a

xxN denotes the membrane control force in the 

longitudinal direction induced by the flexoelectric actuators. 

With the membrane force, one can obtain the bending control 

moment induced by the i-th actuator by multiplying the 

membrane force by a moment arm, i.e., the distance between the 

neutral layers of beam and patch, as  
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(4) 

where a

xxM represents the control moment induced by the 

actuators. Note that the method used here to evaluate the 

control moment is an approximation. Considering the patch 

thickness is far less than the beam’s thickness, this result is 

accurate enough. With the expressions of membrane force and 

control moment, the influence of the flexoelectric actuators on 

elastic beams can be analyzed next. 

VIBRATION CONTROL WITH MULTIPLE 

ACTUATORS 

Assume the mechanical excitation force F3 and each 

actuator’s control voltage a

i are harmonic with the frequency 

, i.e., *

3 3 e j tF = F   and ( ) ea a j t

i it =   . With harmonic 
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excitations, the steady-state response is also harmonic. Solving 

the equilibrium equation of elastic beam with the flexoelectric 

actuation, introducing the modal expansion method and giving 

the mode shape function of cantilever beams, one can determine 

the beam displacement induced by an external harmonic 

excitation force F3 and harmonic flexoelectric actuations as [23] 
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(5) 

 

where k is the k-th natural frequency of the cantilever beam 

and k is the corresponding damping ratio which can be defined 

as k=c/(2hk); U3k is the cantilever beam’s k-th mode shape 

function and can be written as [22] 
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(6) 

 

 is the phase angle lagging behind the mechanical force 

expressed as 
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(7) 

 

ˆ m

kF  is the k-th modal force induced by the external mechanical 

excitation; ˆ a

kF  is the k-th modal force generated by all AFM 

probes and they can be expressed by introducing Love’s 

control operator as [23] 
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(9) 

 

where 2

3
0

L

k kN U dx  . 
Recall the external excitation is harmonic 

*

3 3 e j tF = F 

. 
For the cantilever beam case, the Love’s control 

operator can be reduced from the double-curvature shells as 
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 [23]; ˆ a

ikF  denotes the k-th modal force 

induced by the i-th actuator and the total effect of the probes 

can be regarded as the superposition of all probes ’ actuation 

effect. The modal actuation factor of the i-th probe and k-th 

mode denotes the modal control force generated by the actuator 

with unit actuation voltage and it is defined as 

 * ˆ /a a a

k i ki iA x F  . The modal actuation factor of the i-th probe 

 *a

k iA x  contains the position information of the i-th probe 

influencing the beam vibration. Thus, the displacement of the 

cantilever beam with the control of n actuators can be 

expressed, with respect to their positions, as  
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(10) 

 

where the modal actuation factor can be written as  
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(11) 

 

Note that L
a
/2≤ *

ix ≤L- L
a
 /2 because the flexoelectric 

patch has the length of L
a
. Eq.(10) shows that the beam’s 

displacement is related to the positions of n flexoelectric 

actuators. If a harmonic mechanical force excites the cantilever 

beam and n multiple actuators are used to control the harmonic 

vibration, the purpose of the vibration control is to minimize the 

tip displacement by adjusting probes ’ positions on the beam. In 

this study, only the actuator positions are analyzed, thus the 

voltages’ amplitudes a

i  are set to a given value a . The 

issue of searching optimal positions for multi-AFM probes 
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under given mechanical forces can be converted to an 

optimization mathematical model, i.e., 
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(12) 

 

To find the optimal positions for n probes to minimize the 

tip displacement, every possible combination of the AMF 

probes’ positions should be tested. Then, the minimal tip 

displacement and the corresponding actuator positions are 

recorded. With the parameters listed in Table 1, the modal 

vibration control effects of the multiple flexoelectric actuators 

laminated on a cantilever beam are evaluated next. 

 

Table 1. Parameters and properties of the beam model. 

Properties values 

Beam length L, (m) 0.100 

Beam width b, (m) 0.010 

Beam thickness, h (m) 0.001 

Young’s modulus of beam, Y (N/m2) 1.556×109 

Flexoelectric patches thickness, h
a
 (m) 50 

Flexoelectric patches length, L
a
 (m) 0.010 

AFM probe tip radius, R (nm) 50 

Actuation voltage, a
 (V) 33.33 

External mechanical force, F3(N) 0.01 

Beam mass density, (kg/m3) 1100 

Poisson’s ratio,  0.3 

Flexoelectric constant, 12 (C/m) 100 

 

CASE STUDIES 

To demonstrate the multi-AMF probe actuations and their 

optimal positions, only three probes are used and only the first 

three modes of a cantilever beam are considered in case studies. 

Actuation characteristics of the multiple AFM probe control 

system are analyzed first, followed by the discussion of control 

effects and the corresponding optimal positions.  

 

Case-1 Modal Optimal Actuator Positions 

When actuation at resonance is considered, generally only 

one corresponding resonance mode is counted. Recall that the 

purpose of the vibration control here is to minimize the tip 

displacement of the cantilever beam. Thus, for the actuation 

case, the aim is to generate the maximal control force with multi-

probe actuators to suppress the beam displacement and 

consequently cancel out the vibration induced by external 

mechanical excitations.  

Since the first three beam modes, i.e. k=1, 2, 3, are evaluated 

here, the excitation frequencies applied to the AMF probes are 

respectively the three beam natural frequencies. Using the 

mathematical model presented in Eq.(12) gives the optimal 

positions for the three probes when the actuation voltage is 

harmonic at natural frequencies. These optimal AFM positions 

of mode 1, 2 and 3 are summarized in Table 2. 

 

Table 2. Optimal actuator positions for three natural modes and 

their maximal actuator induced tip displacements. 

Mode 

number 

First 

actuator 

position 

(m) 

Second 

actuator 

position 

(m) 

Third 

actuator 

position 

(m) 

Maximal 

induced tip 

displaceme

nt (m) 

1 0.005 0.015 0.025 365.14 

2 0.005 0.048 0.058 52.862 

3 0.031 0.066 0.076 18.178 

 

The optimal actuator positions of three AMF probes, as 

listed in Table 2, are different for each natural mode. The free-

end displacement under the k-th natural frequency can be 

deducted from the displacement expression of cantilever beam, 

i.e., Eq.(10), by setting =k and leaving only the k-th term, i.e., 
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(13) 

 

Eq.(13) indicates that for the resonance case the amplitude of 

the suppressed displacement is determined by the modal 

actuation factor  *ˆ a

k iA x  of the corresponding mode.  *ˆ a

k iA x  

can be regarded as a function of the i-th probe’s position *

ix  

as the position varying to achieve the maximal displacement 

suppression. Figure 3 shows the values of modal actuation 

factor for modes 1, 2, 3 as the probe’s position varying from the 

fixed end (x=0) to the tip (x=L).  

 

 
(a) 
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(b) 

 
(c) 

 

Figure 3. Actuation factor of mode (a) 1; (b) 2 and (c) 3 with the 

longitudinal coordinate. 

 

The optimal actuator positions are labeled on the actuation 

factor curve in Fig.3. To achieve the maximal tip displacement 

suppression of the beam, the probes approach the positions 

where the value of actuation factor is relatively large while 

keeping a minimal distance between any two AFM probes to 

avoid stress concentrations, as shown in Fig.3. For mode 1, the 

actuation factor has only one peak at the fixed end, thus the 

probes cluster near the fixed end; for mode 2, two peaks exist 

and the probes arrange themselves to achieve the overall 

maximal effect; for mode 3, though at the fixed end the actuation 

factor reaches the maximal value, the actuator cannot be placed 

right at the fixed end but a space of half patch length L
a
/2 away. 

Consequently, the probes go to the other two peaks of the 

actuation factor plot.  

Note that the minimal distance between any two of the 

actuators is limited by the patches ’ length and permissible 

maximal actuation voltages. If such res triction is removed, the 

AMF probes would overlap each other at the point where 

actuation factor reaches its maximal value. For the cantilever 

beam case especially, as shown in Fig.3, such position is the 

fixed end of the cantilever beam. This concern of patches’ 

length indicates that this parameter maybe one of the variables 

that influent the optimal positions of the actuators. 

 

Case-2 Patch Length 

Since probes/patches have to take up finite spaces and the 

previous discussion implies that the patch length could 

influence the optimal positions of the actuators , influence of the 

patch length is evaluated in Case-2. The variation of the optimal 

positions with the flexoelectric patch length is analyzed here. 

Actuators’ optimal positions of 1, 2 and 3 resonance modes are 

plotted in Fig.4. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 4. The relationship between optimal positions and 

patches length of (a) mode 1; (b) mode 2 and (c) mode 3. 

 

In the beginning, all three AMF probes stay at the fixed end 

of the beam and then the probes move part from each other 

linearly as the flexoelectric patch length increases. For mode 1, 

as there isn’t any peak in the actuation factor curve apart from 

the one at the fixed end, the actuators cluster near the fixed end 

as close as they are permitted; Where for modes 2 and 3, since 

there are other peaks existing in the actuation factor curve, 
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actuators would jump to other peaks to maintain the maximal tip 

displacement suppression as the patch enlarged. 

 

Case-3 Actuation Voltages and Stability 

The first two cases evaluated the actuation characteristics 

of the multi-probe actuation and control system and its modal 

actuation behaviors and position sensitivity. The purpose of the 

actuation is to induce the maximal tip displacement suppression 

of the beam to cancel out the displacement induced by external 

mechanical excitations. While if the maximal displacement 

suppression capability is too large as to outweigh the tip 

displacement induced by the mechanical force, the energy input 

to suppress the vibration is  wasted and the system becomes 

unstable while the three probes keep looking for the optimal 

positions to maintain the minimal tip displacement. Such 

circumstance can be called instability of the system. According 

to the displacement expression i.e., Eq.(10), the control authority 

is related to the actuation voltage a . When the actuation 

voltage is small enough, i.e., below the stability threshold, as to 

control induced displacement is far less than the mechanical 

force induced displacement, the instability absents. The optimal 

positions of the multi-AFM probes are the positions creating 

the maximal suppressions. As the actuation voltage increasing, 

the maximal tip displacement suppression grows bigger than the 

mechanical one. Probes may change their positions to avoid 

over-generating the maximal displacement and substitute with 

one position creating smaller tip displacement suppression.  

To analyze this case, a harmonic point loading of 0.01N is 

applied at the center of the cantilever beam, i.e., x=0.05m. When 

the point loading excites the beam with the first natural 

frequency, the beam vibrates resonantly. Three flexoelectric 

actuators are placed on the beam and applied with resonance 

actuation voltages to minimize the tip displacement of cantilever 

beam. The variation of the optimal positions for three probes 

with the increase of actuation voltage’s amplitude is plotted in 

Fig.5. 

 

 
Figure 5. The optimal positions of three actuators under first 

mode resonance. 

 

When the voltage amplitude is relatively small below the 

stability threshold, the optimal actuator positions, as predicted, 

remain the same as the actuation voltage grows. While after a 

threshold point, the optimal positions start to distribute almost 

randomly or the system becomes unstable. As explained earlier, 

when the residue displacement reaches zero the probes have to 

change the positions to maintain the control effect and, thus, 

the system keeps looking for three optimal positions  as 

observed in the figure. The relationship between the residual 

displacement and the actuation voltage is shown in Fig.6. 

 

 
Figure 6. The residual tip displacement under the first mode 

resonance. 

 

The point (i.e., the stability threshold) when the optimal 

positions of the actuator start to “randomly” distribute, 

coinciding with, as shown in Fig.6, the point when the residual 

tip displacement goes close to zero. Note that before the 

stability threshold the residual tip displacement decreases 

proportionally to the increasing of actuation voltages. Such 

phenomenon is reasonable according to the reduced 

displacement expression under resonance i.e., Eq.(13), when the 

actuator positions remain the same, the relationship between the 

tip displacement and actuation voltage is linear. Similar analysis 

is done on mode 2 and mode 3, when the mechanical force is 

harmonic with the 2nd and 3rd natural frequencies and the 

corresponding position/voltage results are plotted in Fig.7. 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 

Figure 7. Optimal actuator positions of under (a) second mode 

(b) third mode resonances; the residual tip displacement of (c) 

second mode (d) third mode. 

 

When actuation voltage is relatively small below the 

stability threshold, the actuators’ control ability is weak. Thus, 

the three AMF probes works together to resist the vibration 

induced by the mechanical excitation. At this moment, the 

optimal actuator positions coincide with the optimal positions 

for the maximal displacement suppression discussed in Case-1. 

While as the actuation voltage becomes larger than necessary, 

the actuations are so strong as to interference with each other. 

Under this circumstance, more than suppressing the tip 

displacement induce by the mechanical force, they have to 

adjust their relative positions to maintain the control effect and, 

thus, the system becomes unstable. Focusing on the stable part, 

characteristics of the actuators under small actuation voltage 

below the stability threshold are studied in the following part. 

Another reason for focusing on small voltage is that too large 

voltage applying on the flexoelectric patch could induce serious 

stress concentration possibly even breaking the flexoelectric 

material [17]. 

 

Case-4 Position of Mechanical Point Force 

The actuation voltage, as discussed in the third case, 

would not influence the optimal actuator positions as long as it 

is relatively small as compared with the mechanical counterpart . 

The influence of the position of mechanical point loading is 

evaluated here. The actuation voltage used here is 0.1V, and a 

0.01N point loading excites the beam at various positions from 

the fixed end to the tip. Note that the actuation voltage chosen 

here remains small enough to ensure the absence of instability. 

Again, the excitation frequency of the mechanical force and 

actuation voltage is set to be the first, second and third natural 

frequencies. The optimal actuator positions as the point loading 

moving on the beam are plotted in Fig.8. 

 

 
(a) 

 
  (b) 
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  (c) 

 

Figure 8. Optimal actuator positions under different point 

loading positions of (a) first mode; (b) second mode; (c) third 

mode. 

 

As shown in Fig.8, the optimal actuator positions remain 

unchanged as the point loading moving from x=0 to x=L. In 

other words, the positions of the mechanical force do not 

influence the optimal AFM actuator positions. The displacement 

induced by the point loading is far larger than the tip 

displacement suppression induced by the flexoelectric 

actuators. Thus, the actuators ’ optimal positions are those 

which generate the maximal tip displacement suppression. Recall 

that Case-1 reveals the optimal actuator positions of modes 1, 2 

and 3 in Fig.8 are identical to those listed in Table 2. Note that 

although when voltage is relatively small the optimal positions 

are independent from the location of mechanical excitations, the 

optimal positions for modes 1, 2, 3 are different from each other. 

Thus, the frequency of the mechanical force seems the only 

external variable that influences the optimal actuator positions.  

The relationship between them is discussed in the next case.  

 

Case-5 Excitation Frequency of Mechanical Force 

In the beginning, the hypothesis was that the optimal 

actuator positions on the cantilever beam could be influenced 

by the actuation voltage, the position of mechanical force and 

the excitation frequency. While as the voltage induced 

displacement is relatively small as compared with that induced 

by the mechanical force, as discussed in Case-3 and Case-4, the 

optimal positions remain unchanged as the actuation voltage or 

position of point loading varying. Under this circumstance, the 

excitation frequency becomes the only variable that influences 

the optimal positions and this is evaluated in this case. The 

actuation voltage is set to a relatively small value 0.1V and point 

loading of 0.01N applied at the center (x=0.05m) of the cantilever 

beam. Previous studies suggest that neither changing the 

magnitude of actuation voltage and point loading nor moving 

the excitation position of point loading could change the 

optimal actuator positions, as long as the actuation effect is 

smaller than the mechanical induced vibration. This assumption 

is reasonable considering that the voltage applied on the probe 

must be limited to avoid the stress concentration. The 

frequency becomes the only variable here and the relationship 

between the optimal positions and the excitation frequency from 

0Hz to 400Hz is plotted in Fig.9. 

 

f1 f2 f3

1st jump

2nd jump
3rd jump

4th jump

Figure 9. The variation of optimal actuator positions with 

excitation frequency. 

 

The three vertical lines, shown in Fig.9, indicate the first, 

second and third natural frequencies. The optimal positions at 

these three points are identical to the optimal positions under 

resonance actuations presented in Case-1. The actuator 

positions on the cantilever beam under various excitation 

frequencies are plotted in Fig.9. Note that at four jump points, 

i.e., 36Hz, 104Hz, 140Hz and 312Hz, the optimal positions jump 

from one set to another and these detailed transitions are 

discussed and plotted next. Note that the actuation voltage 

used here is relatively small, thus the optimal positions for multi-

actuators are equal to those inducing the maximal controllable 

displacement for actuators, which can be obtain by the tip 

displacement, i.e., Eq.(10), as 
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(14) 

 

When the tip of the beam is considered, Eq.(14) reveals that 

the magnitude of the tip displacement can be regarded as a 

function of the actuators’ positions *

ix  embedded in the 

actuation factor  *ˆ a

k iA x  and the excitation frequency . 

Detailed amplitudes of beam tip vibration are plotted in Fig.10 

with frequencies near four jump points, where only three 

intermediate frequencies are marked. When the frequency is 

relatively low, i.e., near the first natural frequency, the fixed end, 

as shown in Fig.10(a), represents better actuation positions for 

actuators. Thus, the actuators cluster near the fixed end as 

illustrated in Fig.9. 
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72Hz

36Hz

28Hz

 
(a) 

112Hz

104Hz
60Hz

 
(b) 

128Hz

140Hz
168Hz

 
(c) 

312Hz

280Hz

248Hz

 
(d) 

 

Figure 10. Transitions of beam tip displacements with probe 

positions under different frequencies near (a) first, (b) second, 

(c) third and (d) fourth jump points. 

 

As the frequency moves up, the fixed end is  no longer the 

best positions for all three actuators. When the frequency is 

equal of 36Hz, the region near the middle of the beam becomes 

better than the fixed end. Thus, three actuators jump from the 

fixed end to the middle of the beam as shown in Fig.9 at the first 

jump point. As the frequency keep increasing towards the 

second natural frequency, as shown in Fig.10(b), the figure 

begins to look like the actuation factor curve under the second 

natural frequency as represented by Fig.3(b). The fixed end at 

this frequency becomes more favorable to induce large 

displacement, thus one of the actuator jumps to the fixed at 104 

Hz which is the second jump point. The same behavior can 

explain the third and fourth jump points. 

To obtain the maximal displacement suppression, the 

actuators are always searching for the positions where the best 

actuation effect is achieved. While the so called best position is 

only a function of excitation frequency, thus Fig. 9 illustrates 

the trend of optimal positions for the AFM probe actuators. 

Note that although the case studies here limit the number of 

actuators to three, however, the theory can be applied to 

arbitrary number of probes as long as they can be placed on the 

cantilever beam. 

 

CONCLUSION 

Based on the converse flexoelectric effect, the flexoelectric 

materials, under the electric field gradient induced by AFM 

probes, can be used as actuators to control the structural 

vibrations. In this study, multiple flexoelectric actuators were 

used to obtain better control effects of the cantilever beam, 

while the actuator positions must be carefully chosen to 

guarantee the maximal tip displacement suppression. Thus, the 

optimal positions of the actuators (i.e., AFM probes and 

flexoelectric patches) were defined to minimize the tip 

displacement when subjected to external excitations. The 

optimal positions were obtained by testing every possible 

arrangement of the actuator’s positions and selecting the best 

combinations. To suppress the vibration induced by the external 

mechanical force, the target of introducing the maximal 

displacement suppression induced by the multiple actuators 

was pursued. For the resonance case, this target is identical as 

maximizing the summation of the actuation factor of each 

actuator and the actuation factor curve was given to 

demonstrate where the optimal positions are under resonance 

conditions. The patches’ size, i.e., length, also influences the 

optimal positions of the actuators. As the patches ’ length 

increasing, the probes are forced to separate from each other, 

which leads to their possible positions are limited to avoid 

overlapping and stress concentrations . If the length is 

infinitesimal, the actuators all clustered to the fixed end where 

the actuation factors maximize for every natural mode. 

Furthermore, the amplitude of control voltage does not 

influence the optimal actuator positions when the control 

voltage is relatively small under the stability threshold. While as 

the control voltage enhanced, the control authority, i.e., the 

maximal displacement suppression, becomes stronger than the 

original vibration and thus unstable phenomenon occurs. The 

actuators have to adjust their relative positions  continuously 
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according to the amplitude of control voltage to keep the overall 

tip displacement minimal. When the control voltage goes 

beyond the threshold, the three actuators constantly regulate 

themselves and the system becomes unstable between the 

optimal positions and the control voltage. In addition, as long 

as the control voltage is relatively small under the stability 

threshold, changing the excitation position do not influent the 

optimal actuator positions. Finally, under the small control 

voltage assumption, the optimal actuator positions change with 

respect to the excitation frequency, which are smooth near the 

resonance frequencies and show four salient jumps during 

modal transitions with different mode shapes. Multiple 

flexoelectric actuators, thus, can be used to control the vibration 

of cantilever beams, whose optimal actuator positions can be 

determined as long as excitation frequency is given. This multi-

AFM probe actuation and control methodology can be further 

extended to control of other flexible structures. 
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