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We demonstrate experimentally, numerically, and analytically that soft architected materials can support
the propagation of elastic vector solitons. More specifically, we focus on structures comprising a network of
squares connected by thin and highly deformable ligaments and investigate the propagation of planar
nonlinear elastic waves. We find that for sufficiently large amplitudes two components—one translational
and one rotational—are coupled together and copropagate without dispersion. Our results not only show
that soft architected materials offer a new and rich platform to study the propagation of nonlinear waves, but
also open avenues for the design of a new generation of smart systems that take advantage of nonlinearities
to control and manipulate the propagation of large amplitude vibrations.
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Highly deformable, soft structures characterized by a
nonlinear response have enabled the design of new classes
of tunable and responsive systems and devices, including
soft robots [1,2], self-regulating microfluidics [3], reusable
energy absorbing systems [4,5], and materials with pro-
gramable response [6]. Furthermore, soft architected mate-
rials (also referred to as soft or nonlinear metamaterials)
present opportunities to control the propagation of elastic
waves, since their dispersion properties can be altered by
applying a large, nonlinear predeformation [7–9]. However,
most of the investigations have exclusively focused on linear
stress waves, although the compliant nature of soft systems
is capable of supporting large-amplitude nonlinear waves.
Nonlinearwaves not only display a very rich behavior, but

also enable a broad range of applications, including impact
mitigation layers [10,11], asymmetric transmission [12,13],
switches [14], and lenses [15]. While such waves have
mostly been studied in granular media [10–16], soft archi-
tected materials also provide an ideal environment for their
propagation. In fact, even soft metamaterials made of a
single linear material can support a wide range of effective
nonlinear behaviors that are determined by the architecture.
This marks an important difference between soft architected
materials and granularmedia, since in the latter the nonlinear
response is determined by the contacts between grains, and
those are difficult to control [17], especially in 2D.
In this Letter, we combine analytical, numerical, and

experimental tools to study the propagation of large-
amplitude nonlinear waves in a structure comprising a
network of squares connected by thin and highly deform-
able ligaments. While the behavior of this system under
quasistatic loading has attracted significant interest as it is
characterized by an effective negative Poisson ratio

[18–20], here we focus on its dynamic response and
demonstrate how the geometry of the system directly
affects its nonlinear dynamic elastic properties. We inves-
tigate the propagation of nonlinear waves of mixed trans-
lational and rotational nature and demonstrate the existence
of vector elastic solitons. Moreover, we show that by tuning
the geometry of the structure a wide range of dispersive and
nonlinear dynamic properties can be achieved.
Our system consists of a network of square domains

connected by thin ligaments (see Fig. 1), all made of
elastomeric material [polydimethylsiloxane (PDMS)]. The
squares have edge lengths of approximately 8 mm and
diagonals of length 2l ≈ 11.3 mm that are rotated by an
angle θ0 ¼ 25° with respect to the horizontal and vertical
directions [see Fig. 1(a)]. A system comprising 6 × 40
squares is fabricated with high fidelity using direct ink
writing, an extrusion-based 3D printing method [21,22]
[see Supplemental Material (SM) for details [23]]. After
printing, all squares are filled with PDMS and a small
copper cylinder with radius 2.38 mm is also placed at their
center in order to modify the medium inertial properties.
We start by investigating experimentally the propagation

of pulse waves in the system. Impact experiments are
conducted in which a custom aluminum impactor is used to
initiate simultaneous rotation and displacement of the
squares at one end of the sample [see Fig. 1(a) and
Movies S1 and S2 in SM [23]]. Different displacement
signals are applied to the first column of square by varying
both the initial gap between the impactor and the structure
(defining the maximum imposed displacement) and the
strength of the pulse applied to the impactor (mostly
influencing the maximum imposed velocity). The propa-
gation of the resulting pulses through the entire sample is
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observed using a high-speed camera (Photron FASTCAM
SA1) recording at 3000 Hz. The horizontal displacement uj
of the jth square located in the third row [highlighted by a
horizontal orange line in Fig. 1(a)] is then obtained by
tracking the marker positioned at its center with a digital
image correlation analysis [25].
In Figs. 1(b)–1(e) we show results for two experiments

in which the impactor prescribes a displacement signal
to the first square characterized by ðumax

1 ; vmax
1 Þ ¼

(maxðu1Þ;maxðv1Þ) ¼ ð3.11 mm; 524 mm=sÞ and
ðumax

1 ; vmax
1 Þ ¼ ð4.10 mm; 1166 mm=sÞ (v1 denoting the

velocity of the first square), respectively. Note that the
input displacement and velocity profiles [i.e., u1ðtÞ and
v1ðtÞ] are shown in Fig. S2 of SM [23]. The evolution of
the horizontal displacements uj indicates that there is a
pulse propagating through the sample that is reflected
a couple of times by the boundaries before vanishing
[Figs. 1(b) and 1(d)]. Moreover, by comparing the dis-
placement uj of all squares at different times [Figs. 1(c) and
1(e)], we find that the pulses conserve their spatial shape
during propagation, suggesting that the system can support

the propagation of solitary waves. The experimental movies
also reveal that the squares not only move horizontally
when the pulse propagates, but also rotate (see Movies S1,
S2, and S3 of SM [23]). However, the image resolution
(about 20 pixels per square edge length) is not enough to
monitor with sufficient accuracy their rotation. To capture
the rotational waves propagating through the sample, we
conduct an additional set of experiments where the camera
is focused only on four squares, located at two-thirds of the
sample. The results reported in Fig. S1 and Movie S3 of
SM [23] clearly confirm the simultaneous propagation of
translational and rotational waves in our structure.
To get a better understanding of the dynamic response of

the structure, we investigate its behavior both numerically
and analytically. Since our experiments indicate that, when
the pulse propagates, the squares remain rigid and the
deformation localizes at the hinges, we introduce a discrete
model composed of periodically arranged rigid squares
connected by linear springs at their vertices [see Fig. 2(a)].
More specifically, since the applied deformation is found to
induce both translation and rotation of the squares [18–20],
we consider two linear springs at each vertex, a compres-
sion or tension spring with stiffness k and a torsional spring
with stiffness kθ. Moreover, since we only consider the
propagation of planar waves in the x direction, guided by
our experiments we assign two degrees of freedom to the
jth rigid square: the displacement in the x direction uj and
the rotation θj [see Fig. 2(a)]. Note that, as indicated by the
blue and red arrows in Fig. 2(a), we define the positive
direction of rotation alternatively for neighboring squares
[i.e., if for the jth square a clockwise rotation is positive,
then for the (j − 1)th and (jþ 1)th ones counterclockwise
rotation is considered as positive].
Assuming periodic boundary conditions in the y direc-

tion, it follows that the governing equations of motion for
the jth square can be written as (see SM for details [23])

m
∂2uj
∂t2 ¼ k½ujþ1 − 2uj þ uj−1

− l cosðθjþ1 þ θ0Þ þ l cosðθj−1 þ θ0Þ�

þ kθ
l
ðθjþ1 − θj−1Þ sinðθj þ θ0Þ; ð1Þ

J
∂2θj
∂t2 ¼−kθðθjþ1þ 6θjþ θj−1Þ

− klðujþ1−uj−1Þ sinðθjþ θ0Þ
þ kl2 cosðθjþ θ0Þ½sinðθjþ1þ θ0Þ
þ sinðθj−1þ θ0Þ− 2sinðθjþ θ0Þ�
þ kl2 sinðθjþ θ0Þ½cosðθjþ1þ θ0Þþ 6cosðθjþ θ0Þ
þ cosðθj−1þ θ0Þ− 8cosðθ0Þ�; ð2Þ

where m and J denote the mass and the moment of inertia
of the squares, respectively. For the structure considered in

FIG. 1. (a) The system consists of a network of square domains
connected by thin ligaments. Pulse waves are generated by a
hammer strike on an aluminium impactor and propagate from left
to right. (b)–(d) Spatiotemporal displacement diagrams and (c)–(e)
spatial displacement profiles at t ¼ 7; 10; 13; 16 ms for an impact
characterized by (b),(c) ðumax

1 ; vmax
1 Þ ¼ ð3.11 mm; 524 mm=sÞ

and (d),(e) ðumax
1 ; vmax

1 Þ ¼ ð4.10 mm; 1166 mm=sÞ.
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this study, we have m ¼ 2.093 g and J ¼ 18.11 gmm2.
Moreover, the stiffnesses k and kθ can be estimated from
the experimentally measured maximal group velocity and
numerically calculated stiffness under uniaxial compres-
sion, respectively (see SM for details [23]), yielding k ¼
19235 N=m and kθ ¼ 0.0427 Nm=rad. Finally, we note
that in this model we neglect the effect of damping, which
is known to have a pronounced effect on the dynamic
response of structures made of soft materials. This is
because here we focus on waves propagating for a
relatively short distance (before reflection at the right
boundary). In this case we find that damping reduces the
displacement amplitude by less than 10% and does not alter
the studied nonlinear effects.
To test the relevance of our discrete model, we numeri-

cally solve Eqs. (1) and (2) using the Runge-Kutta method
and compare their predictions to our experimental results.
In our numerical analysis we consider a chain comprising
40 squares, apply the experimentally extracted displace-
ment signal u1ðtÞ to the first square on the left [while fixing
its rotation, i.e., θ1ðtÞ ¼ 0], and implement free-boundary
conditions at the right end. In Fig. 2(b) we report numerical
and experimental results at t ¼ 9.5 ms for different impact
conditions, while in Fig. 2(c) we focus on an impact for
which umax

1 ¼ 4.10 mm and vmax
1 ¼ 1166 mm=s and com-

pare the numerical predictions and experimental data at
different times. Both plots show that the pulse profiles and
amplitudes are well captured by the discrete model.
Moreover, the numerical results in Fig. 2(c) confirm that

for certain impact conditions the pulse propagates with no
apparent distortion.
While Eqs. (1) and (2) contain the full nonlinear and

dispersive terms of the modeled system, a deeper insight
into its dynamics can be achieved by further simplifying
them to derive analytical solutions. To this end, we first
introduce the normalized displacementUj ¼ uj=2l cosðθ0Þ,
time T ¼ t

ffiffiffiffiffiffiffiffiffi
k=m

p
, stiffness K ¼ kθ=kl2, and inertia α ¼

l=ð ffiffiffiffiffiffiffiffiffi
J=m

p Þ (see SM for details [23]). Second, we take the
continuum limit of Eqs. (1) and (2) and retain the nonlinear
terms up to second order, as well as the dominant
dispersion terms, obtaining (see SM for details [23])

∂2U
∂T2

¼ ∂2U
∂X2

þ ð1 − KÞ tanðθ0Þ
∂θ
∂X ; ð3Þ

∂2θ

∂T2
¼ α2

�
½cosð2θ0Þ − K� ∂

2θ

∂X2
− 2 sinð2θ0Þ

∂U
∂X

− 4

�
2K þ cos2ðθ0Þ

∂U
∂X þ 2sin2ðθ0Þ

�
θ

− 4 sinð2θ0Þθ2
�
; ð4Þ

where X ¼ x=2l cosðθ0Þ, with x denoting the coordinate
along the x axis. Finally, we introduce the traveling wave
coordinate ζ ¼ X − cT, c being the normalized pulse
velocity, so that Eqs. (3) and (4) become

∂2U
∂ζ2 ¼ −

ð1 − KÞ tanðθ0Þ
1 − c2

∂θ
∂ζ ; ð5Þ

∂2θ

∂ζ2 ¼ 2α2β sinð2θ0Þ
∂U
∂ζ þ 4α2β sinð2θ0Þθ2

þ 4α2β

�
2K þ cos2ðθ0Þ

∂U
∂ζ þ 2sin2ðθ0Þ

�
θ; ð6Þ

where β ¼ ½α2ðcosð2θ0Þ − KÞ − c2�−1. Note that the dis-
placement Uðζ; TÞ and rotation θðζ; TÞ are now continuous
functions of ζ and T. By integrating Eq. (5) with respect to
ζ and assuming a zero integration constant (i.e., a wave
with a finite temporal support), we obtain

∂U
∂ζ ¼ −

ð1 − KÞ tanðθ0Þ
ð1 − c2Þ θ; ð7Þ

which can then be substituted into Eq. (6) to obtain

∂2θ

∂ζ2 þ Pθ þQθ2 ¼ 0; ð8Þ

where

P ¼ 4α2β

ð1 − c2Þ ½ð2c
2 − 1 − KÞsin2θ0 − 2ð1 − c2ÞK�;

Q ¼ 2α2β

ð1 − c2Þ ð2c
2 − 1 − KÞ sinð2θ0Þ:

FIG. 2. (a) Schematics of the system. (b) Spatial displacement
profiles at time t ¼ 9.5 ms for five different impacts character-
ized by different combinations of umax

1 and vmax
1 . (c) Spatial

displacement profiles at t ¼ 6.7, 10 at 13.3 ms for a single
experiment with ðumax

1 ; vmax
1 Þ ¼ ð4.10 mm; 1166 mm=sÞ. In (b)

and (c) both experimental results (markers) and numerical
prediction (blue lines) are shown.
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Note that Eq. (8) has the form of the well-known nonlinear
Klein-Gordon equation with quadratic nonlinearity [26].
When P < 0 and Q > 0, analytical solutions of Eq. (8)
exist in the form of a solitary wave with a stable profile,

θ ¼ Asech2
ζ

W
; ð9Þ

where A is the amplitude of the pulse and c and W are its
velocity and characteristic width, which can be determined
as (see SM for details [23])

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6K þ 3ð1þ KÞsin2ðθ0Þ þ Að1þ KÞ sinð2θ0Þ

6K þ 6sin2ðθ0Þ þ 2A sinð2θ0Þ

s
;

W ¼ 1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − c2Þ½α2ðcosð2θ0Þ − KÞ − c2�

2ð1 − c2ÞK þ ð1 − 2c2 þ KÞsin2ðθ0Þ

s
: ð10Þ

Finally, by substituting Eq. (9) into Eq. (7), the solution for
the displacement is found as

U ¼ A
ð1 − KÞW tanðθ0Þ

ð1 − c2Þ
�
1 − tanh

ζ

W

�
: ð11Þ

Equations (9) and (11) reveal a unique feature of our
system: its ability to support an elastic vector soliton. In
fact, in our nonlinear system two components—one trans-
lational and one rotational—are coupled together and
copropagate without distortion nor splitting. While vector
solitons have been previously observed in optics [27,28],
this is the first time—to the best of our knowledge—that
such a phenomenon is experimentally observed in the
elastic case. Finally, we note that even in the linear regime
our system supports coupled translational-rotational modes
(see SM for details [23]), a feature previously only
observed in granular crystals [29,30].
Next, we test the validity of our analytical solution

Eqs. (9)–(11) by comparing it to numerical results obtained
by direct integration of the full discrete model [Eqs. (1) and
(2)]. Note that in this set of simulations we assign to the
first square on the left the displacement and rotation signals
given by Eqs. (9) and (11), respectively, and keep free-
boundary conditions at the right end. In Fig. 3(a) we focus
on the structure considered in this study (for which
θ0 ¼ 25°, α ¼ 1.7, and K ¼ 0.073) and show the profiles
predicted analytically and numerically for both displace-
ment (left axis) and rotation (right axis) assuming
A ¼ 0.05. We find an excellent agreement between our
analytical (lines) and numerical (markers) results. While for
this set of parameters our theory predicts the propagation of
a solitary wave with velocity c ¼ 0.8152 and characteristic
width W ¼ 5.9071, the numerical simulations show the
propagation of a pulse that conserves its spatial shapes and
is characterized by c ∼ 0.8030 and W ∼ 5.8824. It is
important to note that, as shown by Eq. (10), both the
pulse width and velocity can be tuned and controlled by

altering either the amplitude of the wave (i.e., by changing
A) or the geometry of the structure (i.e., by changing θ0, K,
and α). To highlight this important point, in Figs. 3(b)–3(d)
we report the evolution of c and W as a function of A, K,
and θ0. The contour plots indicate that W can be tuned by
varying either A or K. Differently, we find that c is affected
by changes in θ0 and K (see also Fig. S5 of SM [23]). The
plots also reveal another interesting feature of our system:
the solitons propagate faster for smaller amplitudes.
Finally, in Fig. 4 we compare the analytical solution to

our experimental results. More specifically, for each experi-
ment we extract the maximum displacement and velocity
experienced by the 1st, 2nd, 5th, 10th, 15th, and 20th
squares and report them together with the analytical
prediction (purple line) in the Umax-Vmax plane [where
Umax ¼ maxðUÞ and Vmax ¼ maxðdU=dTÞ]. Interestingly,
we find that all applied excitations result in the propagation
of a soliton. If the input is close to a soliton solution, the
pulse is immediately stable (i.e., even for square number
< 5 the experimental markers are close to the analytical
curve). In contrast, if the applied impact results in a
displacement signal far from that of the supported solitary
wave, it takes 10–20 squares for the wave to become stable.
However, it is important to note that this observation is not
general and relates to the limited variety of excited
displacement profiles (all of them are reasonably close
to tanh; see Fig. S2 of SM [23]). Finally, in all experiments
we find a slight displacement amplitude decrease along
propagation, most probably the signature of the intrinsic
material damping.
In summary, we have studied experimentally, numeri-

cally, and analytically the propagation of large-amplitude
nonlinear elastic waves in a structure comprising a network
of squares connected by thin and highly deformable
ligaments. Our results indicate that the system supports

FIG. 3. (a) Comparison between analytically (lines) and numeri-
cally (markers) predicted normalized displacement and rotation
profiles at T ¼ 10, 20, and 30 and for θ0 ¼ 25°, α ¼ 1.7,
K ¼ 0.073. (b) Evolution ofW as a function ofA andK (assuming
θ0 ¼ 25° and α ¼ 1.7). (c) Evolution of c as a function ofA and θ0
(assuming K ¼ 0.073 and α ¼ 1.7). (d) Evolution of c as a
function of A and K (assuming θ0 ¼ 25° and α ¼ 1.7).
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vector elastic solitons (i.e., stable nonlinear waves with
two coupled components—one translational and one rota-
tional), whose properties can be controlled by tuning the
geometry of the structure. While in this study we focused
on the propagation of planar waves in an homogeneous soft
architected material, the response of such systems is very
rich and there remains much to be investigated: How do
nonplanar waves propagate in 2D soft architected materi-
als? How do inhomogeneities and defects affect the
propagation of the solitons? Can the system support bright
or dark solitons? Can we excite topological solitons? We
believe that the tools proposed in this study will help in
answering all these questions and, ultimately, in designing
a new class of structures and devices capable of controlling
high amplitude waves and vibrations.
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FABRICATION

We make use of an extrusion-based 3D printing technique known as direct ink writing to produce the structures
in this work. Unlike many conventional commercial 3D printers that rely on either temperature changes or photo-
polymerization, direct ink writing is an ambient process that relies on material rheology to produce a pattern that
maintains its shape [1]. Subsequent immobilization steps (thermal crosslinking, sintering, etc.) can then be taken
after the pattern is formed, in a materials-dependent manner. The advantage of this approach is the broader palette
of materials that is compatible with it. Polydimethylsiloxane (PDMS) is a well-behaved silicone rubber that possesses
the necessary elastomeric qualities for our structures. However, its conventional precursors are Newtonian fluids
that do not maintain their shape after extrusion. A 3D-printable “ink” version of PDMS can be produced through
the addition of fumed silica to the resin, resulting in a non-Newtonian paste. Our ink was produced by blending
commercially-available PDMS materials (85 wt% Dow Corning SE-1700 and 15 wt% Dow Corning Sylgard 184) in a
mixer (Flacktek SpeedMixer). This results in a rheological profile that includes both shear-thinning effects as well as
viscoelastic yielding behavior (see SI of Ref. [2] for more details). A shear-thinning response, defined by a decrease
in apparent viscosity with increasing shear rate, facilitates extrusion of the material through tapered nozzles (in this
case 0.84 mm diameter) during printing. The viscoelastic yielding behavior is characterized by a high storage modulus
(G’) when shear stress is low (such that the material maintains its shape and behaves like an elastic solid) and a
defined yield stress above which the storage modulus suddenly drops (allowing flowability).

The paste-like material therefore flows well during extrusion, but maintains its shape when patterned in 3D.
Patterning is performed by a commercial 3D motion control system, which is controlled by G code commands which
we generated via python scripts. After the material is patterned, a cross-linking step (100 ◦C for approximately
30 minutes) produces the familiar hyperelastic mechanical response of PDMS. After curing, additional structural
features can be added, for example, through the addition of additional PDMS (Sylgard 184) and (optionally) Cu
cylinders that add nodal mass and facilitate motion tracking during subsequent experiments (as in Ref. [3]).
To characterize the response of the two cured PDMS variants (i.e. the standard cast and printed PDMS) used in our
structures, we performed dynamic mechanical analysis (DMA) using a TA Instruments RSA III in compression mode.
A nominal 100 kPa pre-stress was used, and oscillations of 0.001 strain were imposed up to approximately 90 Hz
at room temperature. As shown in Fig. S1, we measured the storage and loss moduli over the relevant frequency
range. There is negligible difference between the standard variety of PDMS (indicated as “PDMS (control)”) and the
silica-filled variety (indicated as “PDMS (printed)”) that we use as a 3D printing ink.
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Figure S1: Storage and loss moduli of the cured PDMS materials used in this work. PDMS (control) refers to standard cast
PDMS (used in the centers of the squares) while PDMS (printed) refers to the silica-filled PDMS used during 3D printing of
the structure.

ADDITIONAL EXPERIMENTAL RESULTS

Input signals

In Fig. S2 we report the input displacement profile, u1(t), and the corresponding velocity profile, v1(t), for the
five experiments presented in Fig. 2(b). It should be noted that all profiles present similar features. Note that the
displacement profile for the impact characterized by (umax1 , vmax1 ) =(4.10 mm, 1166 mm/s) has a very similar shape
as tanh function and therefore produces the best solitary wave.

Figure S2: (a) Input displacement profile u1(t) and (b) corresponding velocity profile v1(t) for the five experiments presented
in Fig. 2(b).

Rotation of the squares

Movies S1 and S2 reveal that the squares not only move horizontally when the pulse propagates, but also rotate.
To capture the rotational waves propagating through the sample we conduct an additional set of experiments where
the camera is focused only on three squares located at two-thirds of the sample (i.e. the 20th, 21st and 22nd square),
as shown in Fig. S3(a) (see also Movie S3). To capture the rotational waves propagating through the sample, we track
the positions of two diametrically opposed markers on the copper cylinders, highlighted by red dots and labelled as
”top” and ”bottom” in Fig. S3(a). The rotation θj of the j-th square is then obtained as
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θj(t) = (−1)
j

tan−1

([
xtopj (t)− xtopj (0)

]
−
[
xbotj (t)− xbotj (0)

][
ytopj (t)− ytopj (0)

]
−
[
ybotj (t)− ybotj (0)

] ) , (S1)

where (xtopj , ytopj ) and (xbotj , ybotj ) (j = 20, 21 and 22) denote the positions of the two markers. Furthermore, for
the same three squares we also monitored their horizontal displacement, by tracking the horizontal position of the
marker at the center of the copper cylinders (highlighted by a red dot and labelled as ”center” in Fig. S3(a))

In Figs. S3(b) and (c) we show the evolution of uj and θj as a function of time, respectively. The results confirm
the simultaneous propagation of translational and rotational waves in our structure.

Figure S3: (a) Movie frame: three squares are analyzed (i.e. the 20th, 21st and 22nd squares). For each unit cell three markers
(red dots) are tracked. (b) Extracted horizontal displacements uj and (c) angles θj as a function of time.

ANALYTICAL EXPLORATION

To get a deeper understanding of the mechanical response of the structure, we analytically investigate its behavior.
We first establish a discrete model and determine the governing equations. Then, we take the continuum limit and
derive analytical solutions.

Discrete model

Our structure consists of a network of square domains connected by thin ligaments (see Fig. 1 of the main text and
Figure S4-a), all made of elastomeric material (polydimethylsiloxane - PDMS). The squares have diagonal lengths
of 2l that are rotated by an angle θ0 with respect to the horizontal direction. In this study we are investigating
the propagation of plane waves along the x-direction. To efficiently model the system, we first notice that when a
planar wave propagates through the system all deformation is localized at the hinges that bend in-plane, inducing
pronounced rotations of the squares. Therefore, the structure can be modeled as a network of rigid squares connected
by springs at their vertices (see Figure S4-b). More specifically, we model each hinge with two linear springs: (i) a
compression/tension spring with stiffness k and (ii) a torsional one with stiffness kθ.

Finally, we also find that, when a planar wave propagates in the x-direction, (i) the squares do not move in the
y-direction; (ii) neighboring squares aligned vertically experience the same horizonal displacement and rotate by the
same amount but in opposite directions; and (iii) neighboring squares always rotate in opposite directions. Therefore,
since in this study we focus on the propagation of planar waves in the x-direction, each rigid square in our discrete
model has two degrees of freedom: the displacement in the x-direction, u, and the rotation about the z-axis, θ.
Moreover, focusing on the rigid [j, i]-th square (see Figure S4), we have

u[j, i] = u[j, i+1], θ[j, i] = θ[j, i+1]. (S2)

Note that, as indicated by the blue and red arrows in Fig. S4, we define positive direction of rotation alternatively for
neighboring squares (i.e., if for the [j, i]-th square a clockwise rotation is positive, then for [j, i− 1]-th, [j, i + 1]-th,
[j+1, i]-th and [j−1, i]-th ones counterclockwise rotation is considered as positive). We found this choice to facilitate
our analysis.
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Figure S4: (a) Picture of our structure. (b)-(c) Schematics of the system.

Governing equations of the discrete model

To determine the governing equations for the discrete model, we focus on the [j, i]-th rigid square, for whose
behavior is governed by

m[j, i]ü[j, i] =

4∑
p=1

F [j, i]
p ,

J [j, i]θ̈[j, i] =

4∑
p=1

M [j, i]
p ,

(S3)

where m[j, i] and J [j, i] are the mass and moment of inertia of the rigid square, respectively. Moreover, F
[j, i]
p and

M
[j, i]
p are the forces in horizonal direction and moments generated at the p-th vertex of the rigid square by the ten-

sion/compression and torsional springs, respectively. To calculate these forces and moments, we start by determining

the vectors r
[j, i]
p (p=1, 2, 3, 4) that connect the center of the [i, j]-th rigid square to its four vertices (see Fig. S4-c),

r
[j, i]
1 (θ[j, i]) = l

[
cos(θ[j, i] + θ0)

]
ex + l

[
(−1)

j
sin(θ[j, i] + θ0)

]
ey,

r
[j, i]
2 (θ[j, i]) = l

[
− (−1)

j
sin(θ[j, i] + θ0)

]
ex + l

[
cos(θ[j, i] + θ0)

]
ey,

r
[j, i]
3 (θ[j, i]) = l

[
− cos(θ[j, i] + θ0)

]
ex + l

[
− (−1)

j
sin(θ[j, i] + θ0)

]
ey,

r
[j, i]
4 (θ[j, i]) = l

[
(−1)

j
sin(θ[j, i] + θ0)

]
ex + l

[
− cos(θ[j, i] + θ0)

]
ey,

(S4)

The deformation of the springs connected to the vertices of the rigid square can then be written as

∆l1
[j, i] =

(
u[j+1, i] − u[j, i]

)
ex +

[(
r
[j+1, i]
3 (θ[j+1, i])− r

[j+1, i]
3 (0)

)
−
(
r
[j, i]
1 (θ[j, i])− r

[j, i]
1 (0)

)]
∆θ

[j, i]
1 = θ[j, i] + θ[j+1, i]

∆l2
[j, i] =

[(
r
[j, i+1]
4 (θ[j, i+1])− r

[j, i+1]
4 (0)

)
−
(
r
[j, i]
2 (θ[j, i])− r

[j, i]
2 (0)

)]
∆θ

[j, i]
2 = θ[j, i] + θ[j, i+1]

∆l3
[j, i] =

(
u[j−1, i] − u[j, i]

)
ex +

[(
r
[j−1, i]
1 (θ[j−1, i])− r

[j−1, i]
1 (0)

)
−
(
r
[j, i]
3 (θ[j, i])− r

[j, i]
3 (0)

)]
∆θ

[j, i]
3 = θ[j, i] + θ[j−1, i]

∆l4
[j, i] =

[(
r
[j, i−1]
2 (θ[j, i−1])− r

[j, i−1]
2 (0)

)
−
(
r
[j, i]
4 (θ[j, i])− r

[j, i]
4 (0)

)]
∆θ

[j, i]
4 = θ[j, i] + θ[j, i−1]

(S5)



5

where ∆l[m,n]p and ∆θ
[m,n]
p denote the changes in length and angle experienced by the tension/compression and

rotational springs on the p-th vertex of [m, n]-th rigid square, respectively. It follows that

F [j, i]
p =

(
k∆l[j, i]p +

kθ∆θ
[j, i]
p

l2

(
ez × r[j, i]p

))
· ex,

M [j, i]
p = −kθ∆θ[j, i]p − k r[j, i]p ×∆lp

[j, i].

(S6)

Substitution of Eqns. (S6) and (S2) into Eqns. (S3) yields

m[j, i]ü[j, i] = k
(
u[j+1, i] − 2u[j, i] + u[j−1, i] − l cos(θ[j+1, i] + θ0) + l cos(θ[j−1, i] + θ0)

)
+
kθ
l

(
θ[j−1, i] − θ[j+1, i]

)
sin(θ[j, i] + θ0),

J [j, i]θ̈[j, i] = −kθ
(
θ[j+1, i] + 6θ[j, i] + θ[j−1, i]

)
− kl

(
u[j+1, i] − u[j−1, i]

)
sin(θ[j, i] + θ0)

+ kl2 sin(θ[j, i] + θ0)
(

cos(θ[j+1, i] + θ0) + 6 cos(θ[j, i] + θ0) + cos(θ[j−1, i] + θ0)− 8 cos(θ0)
)
.

+ kl2 cos(θ[j, i] + θ0)
(

sin(θ[j+1, i] + θ0) + sin(θ[j−1, i] + θ0)− 2 sin(θ[j, i] + θ0)
)

(S7)

which represent the governing equations for the discrete system.

Continuum limit

While Eqs. (S7) contains the full nonlinear and dispersive terms of the modeled system and can only be solved
numerically, a deeper insight into the system dynamics can be achieved by further simplifying them to derive analytical
solutions. To this end, we fist introduce the normalized displacement U [j, i] = u[j, i]/(2l cos θ0), time T = t

√
k/m,

stiffness K = kθ/(kl
2) and inertia α = l

√
m/J . Moreover, since in Eqs. (S7) only the displacements and rotations of

squares in the i-th appear, for the sake of simplicity we set Uj = U [j, i], and θj = θ[j, i]. The governing equations Eqs.
(S7) can be then be written in dimensionless form as

∂2Uj
∂T 2

= Uj+1 − 2Uj + Uj−1 −
1

2 cos(θ0)
[cos(θj+1 + θ0)− cos(θj−1 + θ0) +K (θj+1 − θj−1) sin(θj + θ0)]

∂2θj
∂T 2

= α2

{
−K(θj+1 + 6θj + θj−1)− 2(Uj+1 − Uj−1) cos(θ0) sin(θj + θ0)

+ sin(θj + θ0)
[

cos(θj+1 + θ0) + 6 cos(θj + θ0) + cos(θj−1 + θ0)− 8 cos(θ0)
]

+ cos(θj + θ0)
[

sin(θj+1 + θ0) + sin(θj−1 + θ0)− 2 sin(θj + θ0)
]}
.

(S8)

Next , we introduce two continuous functions U (X) and θ (X), which interpolate the discrete variables Uj and θj
as

U (Xj) = Uj , and θ (Xj) = θj , (S9)

where Xj = xj/2l cos(θ0) denotes the normalized coordinate along the x-axis. Using Taylor expansion, the displace-
ment U and rotation θ in correspondence of the (j − 1)-th and (j + 1)-th squares can then be expressed as

U (Xj−1) ≈ U (Xj)−
∂U

∂X

∣∣∣
X=Xj

+
1

2

∂2U

∂X2

∣∣∣
X=Xj

,

U (Xj+1) ≈ U (Xj) +
∂U

∂X

∣∣∣
X=Xj

+
1

2

∂2U

∂X2

∣∣∣
X=Xj

,

θ (Xj−1) ≈ θ (Xj)−
∂θ

∂X

∣∣∣
X=Xj

+
1

2

∂2θ

∂X2

∣∣∣
X=Xj

,

θ (Xj+1) ≈ θ (Xj) +
∂θ

∂X

∣∣∣
X=Xj

+
1

2

∂2θ

∂X2

∣∣∣
X=Xj

,

(S10)
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from which the derivatives of U and θ are obtained as

∂U

∂X

∣∣∣
X=Xj

≈ 1

2
[U (Xj+1)− U (Xj−1)] ,

∂2U

∂X2

∣∣∣
X=Xj

≈ U (Xj+1)− 2U (Xj) + U (Xj−1) ,

∂θ

∂X

∣∣∣
X=Xj

≈ 1

2
[θ (Xj+1)− θ (Xj−1)] ,

∂2θ

∂X2

∣∣∣
X=Xj

≈ θ (Xj+1)− 2θ (Xj) + θ (Xj−1) .

(S11)

Moreover, to further simplify the equations, we assume that the rotation angle θ is small, so that sin θ ∼ θ and
cos θ ∼ 1. It follows that

sin(θj + θ0) ≈ sin θ0 + θj cos θ0,

cos(θj + θ0) ≈ cos θ0 − θj sin θ0.
(S12)

Finally, we substitute Eqs. (S11) and (S12) into the discrete governing equations (Eqs.(S8)) and retain the nonlinear
terms up to the second order as well as the dominant dispersion terms, obtaining

∂2U

∂T 2
=
∂2U

∂X2
+ (1−K) tan(θ0)

∂θ

∂X
,

∂2θ

∂T 2
= α2

[
(cos(2θ0)−K)

∂2θ

∂X2
− 2 sin(2θ0)

∂U

∂X
− 4

(
2K + cos2(θ0)

∂U

∂X
+ 2 sin2(θ0)

)
θ − 4 sin(2θ0)θ2

]
,

(S13)

which represent the continuum governing equations of the system.
Next, we introduce the travelling wave coordinate ζ = X− cT , c being the normalized pulse velocity (the real pulse

velocity is c 2l
√
k/m), so that Eqs. (S13) become

∂2U

∂ζ2
= − (1−K) tan(θ0)

1− c2
∂θ

∂ζ
, (S14)

∂2θ

∂ζ2
= 2α2β sin(2θ0)

∂U

∂ζ
+ 4α2β sin(2θ0)θ2 + 4α2β[2K + cos2(θ0)

∂U

∂ζ
+ 2 sin2(θ0)]θ, (S15)

where

β =
1

α2(cos(2θ0)−K)− c2
. (S16)

Note that the displacement U and rotation θ are now continuous functions of ζ and T . Integration of Eq. (S14)
with respect to ζ, with the assumption of a zero integration constant (i.e. a wave with a finite temporal and spatial
support), yields

∂U

∂ζ
= − (1−K) tan θ0

1− c2
θ, (S17)

which can then be substituted into Eq. (S15) to obtain

∂2θ

∂ζ2
+ Pθ +Qθ2 = 0, (S18)

where

P =
4α2β

(1− c2)

[
(2c2 − 1−K) sin2 θ0 − 2(1− c2)K

]
,

Q =
2α2β

(1− c2)
(2c2 − 1−K) sin(2θ0).

(S19)
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Note that for θ0 → 0, Q → 0 and Eq. (S18) becomes a linear equation. Therefore, the analytical solution derived
here is not valid when θ0 → 0, since the cubic term, which is omitted here, must be considered to properly describe
the propagation of nonlinear waves in such structures.

Eq. (S18) has the form of the well-known nonlinear Klein-Gordon equation with quadratic nonlinearity. When
P < 0 and Q > 0, analytical solutions of Eq. (S18) exist in the form of a finite amplitude solitary wave with a stable
profile

θ = A sech2 ζ

W
, (S20)

where A, c and W denotes the amplitude, velocity and characteristic width of the wave (note that solutions for P < 0
and Q < 0 also exist, but are diverging for ζ → 0). Moreover, by substituting Eq.(S20) into Eq. (S17) the solution
for the displacement is found as

U = A
(1−K)W tan(θ0)

(1− c2)

[
1− tanh

(
ζ

W

)]
. (S21)

Note that the pulse velocity c and width W depend both on the amplitude A of the wave and the geometry of the
structure (i.e. α, K and θ0). In fact, substitution of Eq. (S20) into Eq. (S18) yields

A

(
P +

4

W 2

)
sech2 ζ

W
+A

(
AQ− 6

W 2

)
sech4 ζ

W
= 0, (S22)

which is satisfied for any ζ only if

P +
4

W 2
= 0, and AQ− 6

W 2
= 0. (S23)

By substituting Eqs. (S19) into Eqs. (S23), we finally find

c =

√
6K + 3 (1 +K) sin2(θ0) +A (1 +K) sin(2θ0)

6K + 6 sin2(θ0) + 2A sin(2θ0)
,

W =
1

α

√
(1− c2)[α2 (cos(2θ0)−K)− c2]

2(1− c2)K + (1− 2c2 +K) sin2(θ0)

(S24)

In Fig. S5 we report the evolution of c and W as predicted by Eqs. (S24). In Figs. S5-a and -d we consider
K = 0.073, α = 1.70 and report the evolution of W and c as a function of A and θ0. Note that we consider
5◦ < θ0 < 30◦. The lower limit for θ0 is dictated by the fact that Eq. (S18) is not valid when θ0 → 0 (since the
quadratic term vanished in this case), while the upper limit is determined by noting that, for this particular choice of
K and α, the characteristic width W is an imaginary number for θ0 > 36.7◦ (indicating that the solitons no longer
exist for θ0 > 36.7◦). In Fig. S5-b and -e we consider θ0 = 25◦ and α = 1.70 and report the evolution of W and c as
a function of A and K. Finally, in Fig. S5-c and -f we consider θ0 = 25◦, K = 0.073 and report the evolution of W
and c as a function of A and α. Note that the structure used in this study is characterized by θ0 = 25◦, α = 1.70 and
K = 0.073.

The contour plots reveal that the pulse speed c is not significantly affected by the amplitude A. In contrast, A
has an important effect on W , that is found to dramatically increase as the pulse amplitude decreases. In fact, the
results of Figs. S5-a, -b and -c indicate that W → ∞ as A → 0. Note that as A → 0 the nonlinear response of
the system is weakly activated and W needs to be very large (a low frequency or long wavelength pulse) to ensure
a balancing weak dispersion. As such, solitary waves are expected to form only after long propagation distances,
even for excitations very close to the ideal ones. Experimentally, this requires very long samples, but then the pulse
would be subjected to strong damping, posing serious limitations to the observation and existence of small amplitude
solitary waves. Moreover, we find that the pulse width W can also be tuned by changing the stiffness parameter K.
Our results indicate that c is affected by changes in both θ0 and K.
It is important to note that the existence of the solitary solution to the Klein-Gordon equation (Eq. (S18)) requires
that

P =
4α2β

(1− c2)

[
(2c2 − 1−K) sin2 θ0 − 2(1− c2)K

]
< 0,

Q =
2α2β

(1− c2)
(2c2 − 1−K) sin(2θ0) > 0.

(S25)
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By substituting Equation (S24)1 into Equation (S25), we obtain two non-linear inequalities in A, α, K and θ0.
The structure supports a soliton if these two inequalities are satisfied for all amplitudes A < π/4 − θ0, where the
constraint is introduced to avoid contact between neighboring squares. We find that the system supports a soliton
for α ∈ [1.09,∞), K ∈ [0, 0.336] and θ0 ∈ [0◦, 36.7◦]. Note that the system considerd in this study is characterized by
α = 1.70, K = 0.073 and θ0 = 25◦.

Figure S5: Contour plots showing the evolution of c and W . (a) Evolution of W as a function of A and θ0 (assuming K = 0.073
and α = 1.70). (b) Evolution of W as a function of A and K (assuming θ0 = 25◦ and α = 1.70). (c) Evolution of W as a
function of A and α (assuming θ0 = 25◦ and K = 0.073). (d) Evolution of c as a function of A and θ0 (assuming K = 0.073
and α = 1.70). (e) Evolution of c as a function of A and K (assuming θ0 = 25◦ and α = 1.70). (f) Evolution of c as a function
of A and α (assuming θ0 = 25◦ and K = 0.073).
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Figure S6: Comparison between analytical solution (continuous line) and experimental results (markers). Experimental results
are reported for seven different impacts characterized by different combinations of umax1 and vmax1 .

Finally, we note that the maximum displacement and velocity induced by the pulse, Umax and V max, can be
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obtained from Eq. (S21) as

Umax = max (U) = 2A
(1−K)W tan(θ0)

(1− c2)

V max = max

(
dU

dT

)
= cA

(1−K) tan(θ0)

(1− c2)

(S26)

so that

Umax

V max
=

2W

c
=

2

α

√ [
6K + 6 sin2(θ0) + 2A sin(2θ0)

][
(1− c2)[α2 (cos(2θ0)−K)− c2]

][
6K + 3 (1 +K) sin2(θ0) +A (1 +K) sin(2θ0)

][
2(1− c2)K + (1− 2c2 +K) sin2(θ0)

] . (S27)

Eqn. (S27) defines a parametric representation of a curve, where A is the parameter. Such a curve is plotted in Fig. 4
of the main text with results from five different experiments and in Fig. S6 together with results from another seven
experiments. Note that the experimental data (markers) are obtained by monitoring the maximum displacement
and velocity experienced by the 1st, 2nd, 5th, 10th, 15th and 20th squares. Interestingly, we find that all applied
excitations result in the propagation of a soliton. However, it is important to note that this observation is not general
and related to the limited variety of excited displacement profiles (all of them are reasonable closed to tanh - see Fig.
S2). When in our numerical simulations we use an input displacement profile very different from tanh,

U1(T ) = sech
T

B
, (S28)

B being a constant, solitons are not generated (see Fig. S7).

Figure S7: Response of the system for excited displacement profile with the form of the sech function. The profile displacement
is defined as U1(T ) = sech(T/B) with (a) B = 20, (b) B = 10 and (c) B = 5.
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Propagation of small amplitude waves

As discussed above, for sufficiently small amplitudes the propagating elastic waves do not excite the nonlinear
response of the system. As such, in this case we expect small amplitude dispersive waves and not stable solitary waves
to propagate through the structure.

To better understand how elastic waves with sufficiently small amplitudes propagate through the system, we make
use of Eqs. (S12) and linearize the discrete governing equations (S8) to obtain

∂2Uj
∂T 2

= Uj+1 − 2Uj + Uj−1 +
1

2
tan(θ0) (1−K) (θj+1 − θj−1) ,

∂2θj
∂T 2

= α2
[
(cos(2θ0)−K) (θj+1 + θj−1)− 2

(
1 + 2 sin2(θ0) + 3K

)
θj − sin(2θ0) (Uj+1 − Uj−1)

]
.

(S29)

Eqs. (S29) can be written in matrix form as

MÜj +
∑

p=−1,0,1

K(p)Uj+p = 0 (S30)

where

M =

[
1 0
0 1

]
, Üj+p =

[
∂2Uj+p

∂T 2

∂2θj+p

∂T 2

]
, Uj+p =

[
Uj+p
θj+p,

]
, K−1 =

[
−1 1

2 (1−K) tan(θ0)
−α2 sin(2θ0) −α2(cos(2θ0)−K)

]
K0 =

[
2 0
0 2α2(1 + 2 sin2(θ0) + 3K)

]
, K1 =

[
−1 − 1

2 (1−K) tan(θ0)
α2 sin(2θ0) −α2(cos(2θ0)−K)

] (S31)

Next, we seek a solution in the form of a harmonic wave

Uj+p(T ) = Ũ(µ) exp i(µXj+p − ωT ) (S32)

where ω is the temporal frequency of harmonic motion, µ is the wavenumber and Ũ is a complex quantity that defines
the amplitude of wave motion. Substitution of Eq. (S32) into Eq. (S30) yields

−ω2MÜj +
∑

p=−1,0,1

K(p)epµ = 0 (S33)

which can be solved numerically for wavenumbers µ ∈ [0, π] to obtain the dispersion relation curves shown in Fig.
S8-a. Note that in this band structure the frequency ω is normalised by

√
k/m. It is important to point out that the

two degrees of freedom of the system are coupled, so that both dispersion curves have translational and rotational
components.

Finally, in Fig. S8-b we report the evolution of the group velocity (cg = dω/dk) and phase velocity (cp = ω/k) for

the lower branch as a function of the wavenumber. Both velocities are normalized by 2l
√
k/m.

Estimation of k and kθ

To connect the discrete model to our sample, we need to estimate the mass of the squares (m), their rotational
inertia (J) and the spring stiffnesses (k and kθ). The mass m can be easily measured as 2.093 g and the rotational
inertia J can be calculated from the geometry of the squares to obtain J = 18.11 g·mm2, so that nondimensional
parameter α is determined as α = l

√
m/J = 1.70 (note that l denotes the half length of the square diagonals, l =

5.517 mm). To estimate the spring stiffness k, we start by extracting from our experiments the group velocity of
the fastest travelling wave packets, c̃maxg . We find that any applied excitation results in c̃maxg ≈ 29 m/s. Since the
numerical results shown in Fig. S8-b indicate that the maximum normalized group velocity is cmaxg = 0.8670, it
follows that

cmaxg 2l

√
k

m
= 0.8670 · 2 · 0.005517

√
k

0.002093
≈ 29 m/s (S34)
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Figure S8: (a) Dispersion curves and (b) evolution of the group and phase velocity for the lower branch as a function of the
wavenumber. To generate the plots, we considered K=0.073, α=1.70 and θ0=25◦.

from which we obtain k = 19235 N/m.
Having determined k, we then use equilibrium considerations and Finite Element (FE) simulations to obtain kθ.

On the analytical side, since the structure is periodic, we focus on a single square and consider quasi static uniaxial
compression along the vertical direction (see Fig. S3-a). For this loading case, a force F is applied to the top and
bottom hinges, while there are no forces on the left and right hinges (since the structure is stress-free in horizonal
direction). The moment generated by F is therefore balanced by those generated by the four rotational springs, so
that ∑

MA = −8kθθ + 2Fl sin(θ0 + θ) = 0, (S35)

where the reference point A is indicated in Fig. S3-a. It follows from Eq. (S35) that

F =
4kθθ

l sin(θ0 + θ)
. (S36)

Moreover, the resulting compressive strain ε can be written as

ε =
F

2lk
+ (cos(θ0)− cos(θ0 + θ))

=
2Kθ

sin(θ0 + θ)
+ (cos(θ0)− cos(θ0 + θ))

(S37)

where the first term accounts for the compression of the linear springs and the second one for the rotation of the
square. Finally, Eqs.(S36) and (S37) can used to generate the force-strain (F -ε) curve, shown as a continuous line in
Fig. S9-b.

On the numerical side, we simulate the response of the structure under uniaxial compression using
ABAQUS/Standard. To reduce the computational costs and make sure the response of the system is not domin-
ated by boundary effects, we consider a unit cell comprising a 2×2 array of squares with identical geometry as those
considered in the experiments and apply periodic boundary conditions. The unit cell is discretized with plane strain
triangular elements (ABAQUS element type: CPE6) and the material is modeled using an almost incompressible
Neo-Hookean material with initial shear modulus µ0 = 0.32MPa [2] . The compressive force as a function of the
applied strain is then extracted from the simulation and compared to the analytical prediction. The best agreement
between the two curves is found for kθ = 0.0427 Nm/rad (see Fig. S3-b), so that we obtain K = kθ/kl

2 = 0.073.
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Figure S9: (a) Schematic of an individual square. (b) Force-strain curve under uniaxial compression. Comparison between
analytical (continuous line) and numerical (markers) results.
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MOVIE CAPTIONS

Movie S1 Experiment in which the impactor prescribes a displacement signal to the first square characterized by
(umax1 , vmax1 )=(3.11 mm, 524 mm/s). Note that after the pulse is applied the squares near the impactor vibrate at
high frequency. This is because the applied impact results in a displacement signal that does not exactly match that
of the supported solitary wave. Therefore, not all the energy applied by the impactor goes into the soliton and some
activates vibrations of the squares near the impactor. It is important to note that these vibrations have frequencies
in the range of those of the upper branch of the dispersion relation shown in Fig. S8 (i.e. ∼ 1170 − 1720 Hz - note
that the frequency in the plot is normalized by

√
k/m).

Movie S2 Experiment in which the impactor prescribes a displacement signal to the first square characterized by
(umax1 , vmax1 )=(4.10 mm, 1166 mm/s). Note that after the pulse is applied the squares near the impactor vibrate at
high frequency. This is because the applied impact results in a displacement signal that does not exactly match that
of the supported solitary wave. Therefore, not all the energy applied by the impactor goes into the soliton and some
activates vibrations of the squares near the impactor. It is important to note that these vibrations have frequencies
in the range of those of the upper branch of the dispersion relation shown in Fig. S8 (i.e. ∼ 1170 − 1720 Hz - note
that the frequency in the plot is normalized by

√
k/m).

Movie S3 Experiment with the camera focused only on four squares, located at two-thirds of the sample. This
experiment is conducted to capture the rotational waves propagating through the sample.
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