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France; and eKavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138

Edited by Itai Cohen, Cornell University, Ithaca, NY, and accepted by Editorial Board Member John A. Rogers October 12, 2020 (received for review July 27,
2020)

Domain walls, commonly occurring at the interface of different
phases in solid-state materials, have recently been harnessed at
the structural scale to enable additional modes of functionality.
Here, we combine experimental, numerical, and theoretical tools
to investigate the domain walls emerging upon uniaxial compres-
sion in a mechanical metamaterial based on the rotating-squares
mechanism. We first show that these interfaces can be gener-
ated and controlled by carefully arranging a few phase-inducing
defects. We establish an analytical model to capture the evolution
of the domain walls as a function of the applied deformation.
We then employ this model as a guideline to realize interfaces
of complex shape. Finally, we show that the engineered domain
walls modify the global response of the metamaterial and can be
effectively exploited to tune its stiffness as well as to guide the
propagation of elastic waves.
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The coexistence of two or more phases plays a central role in
many ordered solid-state materials, including ferroelectrics

(1–3), ferromagnets (4, 5), ferroelastics (6, 7), shape memory
alloys (7, 8), and liquid crystals (9). Despite being intrinsically
different, these materials all share the emergence of domain
walls—a type of topological defect that separates regions of
different phases (10). Such interfaces are crucial for the con-
trol of many material properties, including coercivity, resistance,
and/or fatigue (11), and have also been exploited to enable
logic operations (12), racetrack memory (13), and line scan-
ners for reading optical memories (14). Inspired by the recent
advancements in domain walls control strategies at the atomistic
scale, researchers have designed a variety of nonlinear mechani-
cal structures to support these interfaces (15–25). Domain walls
engineered at the structural scale have facilitated the control of
elastic pulses (16, 17, 19, 25), the encryption of information (23),
and the realization of deployable structures (20) as well as of
phase-transforming metamaterials (15, 18). However, due to the
structural complexity of mechanical metamaterials, no analyti-
cal solution has been proposed that fully describes the physics of
such domain walls. This limits their systematic application in the
design of smart structures and devices and hinders the discovery
of additional functionalities.

Here, we use a combination of experiments and analyses to
study the domain walls emerging in a mechanical metamaterial
based on the rotating-squares mechanism. We start by intro-
ducing defects into the system to locally impose nucleation of
one of the two supported buckling-induced rotated phases upon
compression. Importantly, when such defects lead to the coex-
istence of two phases within the specimen, domain walls form,
across which the angle of individual squares switches from one
direction of rotation to the other. We establish an analytical
model that fully describes the emerging domain walls, including
their profile and position as a function of the applied deforma-
tion. Guided by our model, we then introduce pinning defects to
reshape the energy landscape of the system and, therefore, engi-

neer domain walls along arbitrary complex paths. Based on our
findings we foresee the exploitation of domain walls in the realm
of mechanical metamaterials to realize additional functionali-
ties, as we hereby demonstrate by achieving stiffness tuning and
reconfigurable elastic wave guiding.

Flexible Mechanical Metamaterial Based on the
Rotating-Squares Mechanism
We consider an elastomeric structure of thickness t = 3 mm
comprising an array of 21 × 21 squares with center-to-center
distance a = 10 mm, connected at their vertices by ligaments
with width and length of 1 mm (see Fig. 1A and SI Appendix,
section S1 for fabrication details). In all our tests we uniaxially
compress the structure by applying a vertical displacement ∆stage
to the top edge (which results in a nominal longitudinal strain
εyyapplied = ∆stage/(21a)), while using a transparent acrylic plate to
prevent its out-of-plane deformation. The deformation of the
sample is captured with a camera (SONY RX100), and the posi-
tion and rotation of the squares are tracked via image processing
conducted in Matlab (see SI Appendix, section S2 for testing
details). Under the applied compression, one of the beam-like
ligaments in the sample buckles first, because of immeasurable
small imperfections introduced during fabrication. This provides
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Fig. 1. (A) The system consists of a network of 21×21 square domains connected by thin ligaments. The positive direction of rotation alternates for
neighboring squares: A counterclockwise rotation of the [i, j]th square (the square located on the ith row and jth column) is defined positive if i + j is an
even number and negative if i + j is odd. (B) Deformation of the sample when subjected to εyy

applied =−4%. The color indicates the rotation of the squares.

(C) We model the system as an array of rigid squares connected at their vertices by elastic springs. (D) Evolution of θst as a function of εyy
applied as predicted

by Eq. 5 (solid lines) and measured in our experiment (circles).

a unique nucleation site that leads to the formation of a uni-
form buckling pattern in which all squares alternately rotate in
clockwise and counterclockwise directions (Fig. 1B and Movie
S1). Note that to facilitate the analysis, we define the positive
direction of rotation alternately for neighboring squares. Specif-
ically, we choose the square at the bottom left corner to be unit
[1, 1] and define a counterclockwise rotation of the [i, j]th square
(i.e., the square located on the ith row and jth column) positive if
i + j is an even number and negative if i + j is odd (Fig. 1A).
Using these definitions, we find that in our sample, buckling
induces a negative rotation of all squares. On the other hand,
if the ligament that acts as a nucleation site had buckled in the

opposite direction, all units would have experienced a positive
rotation.

The nonlinear behavior of our system can be captured using
a discrete model comprising rigid squares connected at their
vertices by a combination of springs (Fig. 1C) (26–30). Three
degrees of freedom are assigned to the [i , j ]th rigid square: 1)
the displacement in the x direction, u [i,j ]; 2) the displacement in
the y direction, v [i,j ]; and 3) the rotation around the z axis, θ[i,j ].
As for the ligaments, their longitudinal and shearing response is
captured by linear springs with stiffness kl and ks , respectively,
whereas their bending behavior is modeled by using a nonlinear
hardening rotational spring with linear and cubic terms that exert
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a torque M = kθ(∆θ+ γ∆θ3), where ∆θ is the relative rotation
between the connected squares, kθ is the bending stiffness, and
γ is a dimensionless parameter (SI Appendix, section S3.1). Note
that for the structure considered in this study kl = 1,080 N/m,
ks = 239 N/m, kθ = 1.62× 10−4 N·m, and γ= 0.5 (SI Appendix,
section S3.5) and that, to facilitate the analysis, we assume that
the longitudinal and shearing springs are always parallel either to
the x or to the y axis (an assumption which is valid only for small
global rotations of the system). When adopting such a discrete
model, the response of a structure comprising Nx ×Ny units
can be obtained by numerically solving the 3NxNy coupled non-
linear equations derived by imposing force equilibrium at each
square. Further, a deeper insight can be achieved by deriving
analytical solutions. To this end, we assume small rotation of the
squares and take the continuum limit of the discrete equilibrium
equations to obtain (SI Appendix, section S4)

kl∂xxu + ks∂yyu + klθ∂xθ= 0, [1a]
kl∂yyv + ks∂xxv + klθ∂yθ= 0, [1b]

− a2(ksa
2− 4kθ)∇2θ+ 32kθθ+ 4

(
kla

2 + 32γkθ
)
θ3

+ 4kla
2(θ− θ3/6) (∂xu + ∂yv)= 0, [1c]

where ∂αf = ∂f /∂α; ∇2 = ∂xx + ∂yy ; and u , v , and θ are three
continuum functions that interpolate the discrete variables u [i,j ],
v [i,j ], and θ[i,j ] as

u (x = a j , y = a i)= u [i,j ],

v (x = a j , y = a i)= v [i,j ],

θ (x = a j , y = a i)= θ[i,j ].

[2]

The uniaxial compression loading considered in our experiments
is then modeled by imposing

v (y = a Ny)− v (y = a)= a(Ny − 1)εyyapplied, [3]

and
∂xu + θ2/2 = 0, [4]

where Eq. 4 is obtained by requiring the longitudinal forces in
all horizontal ligaments to vanish (since the vertical edges of the
structure are traction-free).

For the case of a homogeneous deformation (as shown in
Fig. 1B), both the rotation of the squares and the longitudinal
strain in the y direction are spatially constant (i.e., θ= θst and
∂yv = εyyst , where θst and εyyst are the constant rotation and longi-
tudinal strain). It follows that, when substituting Eq. 4 into Eqs.
1, Eqs. 1a and 1b vanish, whereas Eq. 1c becomes(

1− (24γ+ 1)εyycr
3

)
θ3st + 2 (εyyst − ε

yy
cr )θst = 0, [5]

where εyycr =−8kθ/kla
2. Further, Eq. 3 reduces to εyyst = εyyapplied.

Eq. 5 can be solved to obtain the rotation of the squares, θst , as
a function of the strain εyyst as

θst =


0, εyyst >ε

yy
cr

±

√
−6 (εyyst − εyycr )

3− (24γ+ 1)εyycr
, εyyst <ε

yy
cr .

[6]

Eq. 6 defines the pitchfork-shape bifurcation diagram shown
in Fig. 1D. At εyycr the initially stable solution (θst = 0) bifur-
cates into two new stable branches that correspond to positive
and negative rotation of the squares and, therefore, to the two
buckling-induced phases supported by the system (which we
refer to as phase+ and phase−). Note that the evolution of the

average rotation of the squares as a function of εyyapplied extracted
from the experiments (Fig. 1 D, circles) nicely follows the phase−
branch, confirming the validity of our model.

Phase-Inducing Defects and Domain Walls
While in our sample the emerging buckling-induced phase is
determined by unavoidable small imperfections introduced dur-
ing fabrication, one can impose a prescribed phase by placing
stiff plastic plates with length ld = 1.2a into selected holes to act
as phase-inducing defects (Fig. 2A and SI Appendix, Fig. S2).
Such plates fully determine the buckling direction of the liga-
ments to which they are connected and, therefore, depending on
their position and orientation, can induce the formation of either
phase+ or phase−. To demonstrate our approach, we evenly
distribute eight of such defects in the holes next to the horizon-
tal boundaries. We find that when the eight defects are located
and oriented as shown in Fig. 2A (see SI Appendix, Fig. S3 for
details), they overcome the imperfections introduced during fab-
rication and make phase+ appear upon buckling (Fig. 2A and
Movie S2). Further, by simply rotating the defects next to the top
boundary by 90◦ (SI Appendix, Fig. S3), we can get phase− to
propagate from the top boundary and phase+ from the bottom
one (Fig. 2B). This leads to the coexistence of two phases within
the specimen and to the formation of a horizontal domain wall
in which the angles of individual squares switch from positive to
negative values. For εyyapplied =−4% such a domain wall is located
near the center of the specimen. However, when the applied
compression is increased to εyyapplied =−6%, it shifts toward the
bottom (Fig. 2C and Movie S2).

To ensure that the phenomena observed in the experiments
are not artifacts introduced by friction or unavoidable imperfec-
tions, we next conduct discrete simulations in which we model
the phase-inducing defects as stiff springs with stiffness kd� kl
and length at rest ld (SI Appendix, section S3.2). We find a
very good agreement between the numerical and experimen-
tal results (Fig. 2 A–C), with the simulations capturing both
the deformation-induced shifting and thinning of the domain
walls (see Movie S2 and SI Appendix, Figs. S12–S18 for simu-
lation results conducted on larger 51× 51 structures). Having
confirmed that our experimental observations emerge because
of the bulk properties of the medium (rather than friction or
geometrical imperfections), we then seek analytical solutions to
describe both the profile and position of the emerging domain
walls. To this end, since both our experiments and discrete simu-
lations indicate that gradients of deformation along the domain
wall are negligible (Fig. 2 B and C), we assume that ∂x (·) = 0 (SI
Appendix, section S4.1). It follows that Eqs. 1 and 4 reduce to

dyyv + θdyθ= 0, [7a]

− a2(ksa
2− 4kθ)dyyθ+ 32kθθ+ 2

(
kla

2 + 64γkθ
)
θ3

+ 4kla
2(θ− θ3/6)dyv = 0. [7b]

Next, we integrate Eq. 7a to obtain

dyv =−θ2/2 +C , [8]

where C is an integration constant that can be determined by
assuming homogeneous deformation inside each phase (i.e., far
away from the domain wall). Specifically, by imposing

∂yv |phase±= εyyst , θ|phase±=±θst , [9]

and using Eq. 5 to connect εyyst and θst , C is determined as

C = εyycr

[
1 +

(24γ+ 1)θ2st
6

]
. [10]

Deng et al. PNAS Latest Articles | 3 of 8

D
ow

nl
oa

de
d 

at
 H

ar
va

rd
 L

ib
ra

ry
 o

n 
N

ov
em

be
r 

23
, 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2015847117/video-2
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2015847117/video-2
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2015847117/video-2
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental


DCBA E

G

F

Fig. 2. (A) Deformation at εyy
applied =−4% of a sample with eight phase-inducing defects arranged to induce nucleation of phase+. (B and C) Deformation at

(B) εyy
applied =−4% and (C) εyy

applied =−6% of a sample with eight phase-inducing defects arranged to induce nucleation of phase+ near the bottom boundary
and phase- near the top one. Experimental and numerical snapshots are shown at Top and Bottom, respectively. The color corresponds to the rotation of the
squares. Zoom-ins of the defects are also shown. (D) Comparison between analytically predicted (solid lines) and experimentally extracted (circles) evolution
of the squares’ rotation θ across the sample for different values of applied strain. (E) Analytically predicted evolution of the total energy of the structure as
a function of domain wall position y0 for different values of applied strain. (F) Evolution of the domain wall position y0 as a function of the applied strain
ε

yy
applied as predicted by theory (solid line) and numerical simulations (dashed line) and extracted from experiments (triangles). (G) Evolution of the energy

barrier ∆E as a function of applied strain εyy
applied.

Finally, by substituting Eqs. 8 and 10 into Eq. 7b we obtain

dyyθ=
16kθ (1 + 24γ)

3a2 (ksa2− 4kθ)
θ(θ− θst)(θ+ θst). [11]

Eq. 11 has the form of the Klein–Gordon equation with
quadratic and cubic nonlinearities and has been shown to admit
analytical solutions of the form (24, 31, 32)

θ= θst tanh
y − y0
w

, [12]

where y0 denotes the position of the domain wall and

w =
a

θst

√
3 (ksa2− 4kθ)

8kθ (1 + 24γ)
[13]

indicates its characteristic width. Having determined θ, the solu-
tion for the displacement field u(x , y) and v(x , y) is then cal-
culated by integrating Eqs. 4 and 8 and θst is determined as a
function of εyyapplied by imposing Eq. 3 (note that because of the
existence of the domain wall, εyyst 6= εyyapplied) (SI Appendix, section
S4.1). At this point, it is worth noting that by multiplying both
sides of Eq. 11 by dyθ and integrating with respect to y , its effec-
tive Lagrangian (from which Eq. 11 can be retrieved by imposing
dyL= 0) is obtained as

L=
1

2
(dyθ)

2− 1

w2

[
θ4

2θ2st
− θ2

]
. [14]

Remarkably, Eq. 14 is identical to the Lagrangian of the φ4

mode—a well-known model established to describe second-
order phase transitions and domain walls in solid-state materials

(33). Next, we verify the validity of our analytical solution by
comparing the evolution of the squares’ rotation across the sam-
ple as recorded in our tests and predicted by Eq. 12 (Fig. 2D).
When choosing y0 to best match the experimentally observed
location of the domain wall (magenta lines in Fig. 2D), we find an
excellent agreement between analytical and experimental results,
with the analytical solution nicely capturing the deformation-
induced thinning of the domain wall. However, it is important to
note that y0 can also be calculated by minimizing the total energy
of the system, Etotal (SI Appendix, sections S3.3 and S4.2). As
shown in Fig. 2E, we find that initially (i.e., for εyyapplied >−2.3%)
Etotal is a convex function with a minimum located at the cen-
ter of the specimen (i.e., at y0 = 11 a). However, as the applied
compression is increased, it gradually turns into a multiwelled
landscape with a local maximum at the center and two min-
ima that progressively move toward the horizontal boundaries.
Therefore, since the structure always seeks to minimize its total
energy, our model indicates that for εyyapplied <−2.3% the domain
wall tends to shift toward one of the horizontal boundaries (solid
line in Fig. 2F). While such shifting of the domain wall is present
in both our experiments and simulations, it is found to start for
larger values of applied deformation in simulations (triangles
and dashed line in Fig. 2F). Such discrepancy is attributed to the
small energy barrier ∆E for moderate levels of applied strain
(Fig. 2G), which makes the shifting very sensitive to imperfec-
tions and friction. However, despite this discrepancy, the results
of Fig. 2 indicate that our analytical model captures all of the
experimentally observed salient features of the emerging domain
walls.

Pinning Defects and Stable Domain Walls
As shown in Fig. 2, by carefully arranging a few phase-inducing
defects in the metamaterial we can induce the formation of a
domain wall, whose location varies as a function of the applied
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deformation. To program the position of the domain wall, one
can prevent the rotation of selected squares by introducing pin-
ning defects consisting of square-shaped rigid plates (with size
0.95a × 0.95a) placed into neighboring holes (SI Appendix, Fig.
S2). In Fig. 3A we present results for a sample with four pinning
defects equally spaced along a horizontal line (see SI Appendix,
Fig. S4 for details), in addition to the previous eight phase-
inducing defects arranged as in Fig. 2 B and C. We find that
in this case the location of the domain wall is fully determined
by the square defects that act as pinning sites (see Fig. 3A for
εyyapplied =−6% and Movie S3). This is due to the pinning defects
that modify the total energy of the system and make it convex
for any value of applied deformation, with a clear minimum at
the defects’ locations (see Fig. 3B and SI Appendix, Figs. S19 and
S20 for additional results). Moreover, we find that the density of
the pinning defects plays an important role. For example, it is
possible to create a wavy domain wall by increasing the spatial
separation between defects. In Fig. 3C and Movie S3, we show a
60 × 21 sample (larger width to minimize boundary effects) with
pinning defects separated by 10 holes instead of 5. The compe-
tition between the pinning sites and the tendency of the domain
wall to shift toward the boundary to minimize the total energy
both cooperate in the formation of an undulating phase sepa-
ration (see SI Appendix, Figs. S21–S23 for additional results).
Finally, while in Fig. 3 we considered pinning defects positioned
on the central line, the location of the domain wall can be pro-
grammed at any location in the sample (see SI Appendix, Fig. S19
for additional results).

Domain Walls with Arbitrary Orientations
The domain wall’s orientation can be easily varied by arranging
the defects along lines that form an angle ϕd with the horizon-
tal axis. In Fig. 4A we show samples with eight phase-inducing
defects linearly arranged and angled at ϕd = arctan(1/2) and
π/4 to induce opposite phases across the joining line (see SI
Appendix, Fig. S3 for details on the arrangement of the defects).

We find that at εyyapplied =−4% not only are the emerging domain
walls shifted from the center of the region defined by the line
of defects, but also they have a very different orientation from
that prescribed by the defects (i.e., the domain wall forms an
angle ϕ= 0.37 and 0.33 radians with the horizontal axis for
ϕd = arctan(1/2) and π/4, respectively; Movie S4). To under-
stand this behavior, we extend our model to domain walls with
ϕ 6= 0 by introducing the local coordinates (Fig. 4A)

ζ = x sinϕ+ y cosϕ, η= x cosϕ− y sinϕ. [15]

When we neglect the variation of deformation along the domain
wall (i.e., we assume ∂η(·) = 0), we find that the profile of the
domain wall is described by (SI Appendix, section S4.1)

θ= θst tanh
ζ − ζ0
w

, [16]

where ζ0 denotes the position along the ζ axis of the domain
wall and

w =
a

θst

√√√√ 3(ksa2− 4kθ)

8kθ(1 + 24γ) + 3kskla
2 sin2 ϕ

ks sin2 ϕ+kl cos
2 ϕ

. [17]

Using the analytical solution given by Eq. 16, we then calculate
the total energy of the system as a function of the orientation
ϕ and position ζ0 of the domain wall. As shown in Fig. 4B, we
find that the domain walls observed in our experiments mini-
mize Etotal (SI Appendix, Figs. S24 and S25). However, once again
the position and orientation of the domain walls can be con-
trolled by introducing a few square pinning defects to reshape the
energy landscape of the structure. For example, by placing four
pinning defects along a line which runs parallel to those defined
by the phase-inducing defects (Fig. 4C and Movie S4), we can
manipulate Etotal to assume a single-welled landscape with a min-
imum at ϕ=ϕd and ζ0 = 21a/ cosϕd (Fig. 4D). Hence, given

A

C

B

Fig. 3. (A) Deformation at εyy
applied =−6% of a sample with four pinning defects and eight phase-inducing defects arranged as in Fig. 2 B and C. Experimental

and numerical snapshots are shown on Left and Right, respectively. The color corresponds to the rotation of the squares. A zoom-in of a pinning defect is
also shown. (B) Analytically predicted evolution of the total energy of the structure as a function of domain wall position y0 for different values of applied
strain. (C) Numerically predicted deformation at εyy

applied =−6% of structures comprising 21× 60 squares with pinning defect separated by 10 holes. The
domain wall becomes wavy for large enough values of applied compression.

Deng et al. PNAS Latest Articles | 5 of 8

D
ow

nl
oa

de
d 

at
 H

ar
va

rd
 L

ib
ra

ry
 o

n 
N

ov
em

be
r 

23
, 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2015847117/video-3
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2015847117/video-3
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2015847117/video-4
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015847117/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2015847117/video-4


A

0

10

20

30

40

0

10

20

30

40

1.32
1.33

1.42

2

5
10
20

1.41
1.42

1.51

2

5
10
20

0 10a 20a 30a
0

10

20

30

40

0 10a 20a 30a0

10

20

30

40

1.01
1.02

2

5
10
20

1.01
1.02

2

5
10
20B

C

D

0 10a 20a 30a 0 10a 20a 30a

[d
eg
]

or
ie
nt
at
io
n

[d
eg
]

or
ie
nt
at
io
n

[d
eg
]

or
ie
nt
at
io
n

[d
eg
]

or
ie
nt
at
io
n

en
er
gy

en
er
gy

0position 0position

0position 0position

E

3.03.0-

Fig. 4. (A) Deformation at εyy
applied =−4% of a sample with eight phase-

inducing defects arranged along two lines that form an angle ϕd =

arctan(1/2) and π/4 with the horizontal axis. (B) Analytically predicted evo-
lution of Etotal at εyy

applied =−4% as a function of ζ0 and ϕ. The triangle
corresponds to the configuration of the experimentally observed domain
wall. (C) Deformation at εyy

applied =−4% of a sample with four pinning
defects in addition to eight phase-inducing defects arranged as in A. (D)
Analytically predicted evolution of Etotal at εyy

applied =−4% as a function of
domain wall position ζ0 and orientation ϕ. The triangle corresponds to the
configuration of the experimentally observed domain wall. (E) Numerically

this energy landscape, the domain walls form exactly along the
lines defined by the pinning defects (Fig. 4C). Further, by arrang-
ing the pinning defects along complex paths and carefully placing
a few phase-inducing defects to initiate phase+ and phase− at
desired locations, information in the form of arbitrary images
can be encoded into the system, which can be revealed upon
the application of a large enough compressive load (Fig. 4E and
Movie S4).

Applications
Having demonstrated that domain walls can be engineered by
arranging a few defects in selected locations, we then explore
how these can be harnessed to enhance the static and dynamic
behavior of the system. To begin with, we focus on the effect of
the domain walls on the nonlinear stress–strain response of the
material. If we assume that near the horizontal boundaries of the
structures (i.e., far away from the domain wall) the deformation
is homogeneous (i.e., θ= θst and ∂v/∂y = εyyst ), the averaged
normal stress in the y direction can be analytically obtained by
taking the continuum limit of the longitudinal forces acting on
the vertical hinges as (SI Appendix, section S4.3)

σyy =
kl
t

(
εyyst +

θ2st
2

)
. [18]

In the absence of domain walls (i.e., for the case of homo-
geneous deformation), εyyst = εyyapplied and θst can be determined
as a function of εyyapplied using Eq. 5. Differently, in the pres-
ence of a domain wall θst and εyyst are simultaneously deter-
mined as a function of εyyapplied by imposing Eqs. 3 and 5. In
Fig. 5A we report the stress–strain curves predicted by Eq. 18
for systems with and without domain walls. We find that the
structures become stiffer when a domain wall arises and the
two opposite phases interact. Moreover, in Fig. 5A we com-
pare the stress–strain curves predicted by our analytical model
with those numerically calculated and the ones measured exper-
imentally in 21× 21 structures with 1) no defects (green line)
and 2) eight phase-inducing defects arranged as in Fig. 2 B
and C (magenta line). The good agreement between all sets of
data shows that our analytical model has potential to comple-
ment numerical tools for the design of systems with a targeted
mechanical response. In its current form the model can cap-
ture only the response of systems with a single domain wall.
However, we show in Fig. 5B that this stiffening effect can be
amplified by the interactions of multiple domain walls. There-
fore, our future work will aim at improving the current analytical
model to predict more complex scenarios with multiple domain
walls.

Next, we study the effect of the domain walls on the propaga-
tion of small-amplitude elastic waves. To this end, we consider
a metamaterial with alternating light (with mass m) and heavy
(with mass 3m/2) squares and numerically calculate its disper-
sion relations as a function of θst , assuming a state of homoge-
neous deformation (Fig. 5D and SI Appendix, section S3.6). We
find that for θ= 0 (i.e., for unrotated squares) a complete band
gap exists at frequency f = 3,293 to 3,674 Hz (highlighted as the
gray-shaded area in Fig. 5C), so that waves within this frequency
range are not expected to propagate in the system. However,
as the rotation of the squares is increased, this band gap shifts
to a lower-frequency range (f = 2,652 to 2,941 Hz; Fig. 5 C and
D). Importantly, since |θ| ∼ 0 within the domain wall and |θ|> 0
in the surrounding compressed medium, such shifting can be

predicted deformation at εyy
applied =−4% for 51× 51 structures with the pin-

ning defects arranged along complex paths (in addition to phase-inducing
defects to initiate phase+ and phase− at desired locations). The color in all
snapshots corresponds to the rotation of the squares.
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Fig. 5. (A) Experimentally measured (triangles), numerically calculated (dashed lines), and theoretically predicted (solid lines) stress–strain curves for 21× 21
structures without a domain wall (structure considered in Fig. 1B) and with a horizontal domain wall (structure considered in Fig. 2 B and C). Note that
the numerical and analytical predictions for the structure without a domain wall match perfectly, so that the green solid and dashed lines overlap. (B)
Numerically calculated stress–strain curve for 21× 21 structures with two vertical domain walls (blue line) and two perpendicular domain walls at ϕ=π/4
(red line). The corresponding deformations are shown as Insets. (C) Dispersion relations for planar elastic waves in the undeformed (θ= 0) and compressed
(θ= 0.4) configurations. (D) Evolution of the band gap frequency, f , as a function of the squares rotation θ. (E) Evolution of θ along the y direction for
a 21× 21 sample with an horizontal domain wall at εyy

applied = 0%, −4%, and −8%. (F) Modal displacement fields at εyy
applied = 0% (f = 2,811 Hz), −4%

(f = 2,812 Hz) and −8% (f = 2,779 Hz).

harnessed to guide elastic waves along the paths defined by the
domain walls. Our analytical model can be used to predict the
width of the propagating channels, wchannel, at a given frequency
f . To demonstrate this, we focus on f = 2,800 Hz—a frequency
for which waves can propagate only if−0.25<θ< 0.25 (Fig. 5D).
In Fig. 5E we report the evolution of θ predicted by Eq. 12
along the y direction for a 21 × 21 sample at three different
deformation levels εyyapplied = 0%, −4%, and −8%. The width of
the propagating channels can be easily determined by identify-
ing the region in which −0.25<θ< 0.25. For this specific case
we find that wchannel = 21a (entire structure), 8.0a , and 5.5a at
εyyapplied = 0, −4%, and −8%, respectively. Next, to verify these
predictions, we report the eigenmodes associated to the fre-
quency of f ∼ 2,800 kHz at εyyapplied = 0, −4%, and −8% for a
system with defects arranged to form a horizontal domain wall
(Fig. 5F and SI Appendix, section S3.6). As predicted by our con-

tinuum model, we find that, when the system is undeformed (i.e.,
for εyyapplied = 0%), the vibrations are spread through the entire
structure. Differently, at εyyapplied =−4% and −8% they are con-
fined near the domain wall, in a prescribed region. Importantly,
the width of this region is very close to the one predicted by
our analytical model wchannel. As such, our results indicate that
domain walls generated by localized defects can be exploited to
tune global properties of the system such as stiffness and wave
guiding and that our analytical model can be leveraged to guide
the design of functional systems.

Conclusions
To summarize, we have shown that in a rotating-squares–based
mechanical metamaterial domain walls across which the rota-
tion of the squares varies from positive to negative values can
be formed by carefully arranging a few phase-inducing defects
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that control the nucleation of the two rotated buckling-induced
phases. We have established an analytical model that explicitly
describes the spatial profile of the domain walls for different ori-
entations and predicts their evolution as a function of the applied
deformation. Further, guided by this model, we have shown that
domain walls of arbitrary shapes can be engineered by introduc-
ing a few pinning defects to modify the energy landscape of the
structure. Importantly, since the considered defects can be eas-
ily placed and removed (the deformation is purely elastic), our
platform can be used to efficiently explore how the shape and
orientation of the emerging domain walls affect the mechanical
properties of the material. Moreover, our study indicates that the
metamaterial creates long-range interactions between the local
defects, which may generate domain walls and ultimately affect
the material’s global mechanical properties. We envision the
exploitation of domain walls in order to encode additional modes

of functionality in mechanical systems, including information
encryption, stiffness tuning, and wave guiding.

Materials and Methods
Details of fabrication are described in SI Appendix, section S1. The protocol
for experiments is provided in SI Appendix, section S2. The discrete model
used to investigate the response of the system and additional numerical
results are presented in SI Appendix, section S3. Details of the continuum
model are presented in SI Appendix, section S4.

Data Availability. All study data are included in this article and SI Appendix.
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