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scaffolds should be designed to match the 
nonlinear response of the surrounding 
native tissue.[1] Further, wearable and 
flexible electronics must accommodate 
the large deformations of soft biological 
tissues and reduce the stresses induced 
on the skin by their presence.[2] Finally, 
it has been shown that reusable, rate-
independent and self-recoverable energy-
absorbing materials can be realized by 
engineering structures that display non-
linear responses characterized by sudden 
snapping-induced load drops.[3,4]

Mechanical metamaterials have 
recently emerged as an effective platform 
to engineer systems with mechanical 
behaviors that are governed by geometry 
rather than composition.[5–8] While initial 
efforts have focused on the design of met-
amaterials with negative properties in the 

linear regime,[9–12] more recently it has been shown that highly 
nonlinear responses (often accompanied by large internal rota-
tions) can be triggered by introducing into the architectures 
slender elements that are prone to elastic instabilities.[5,13] 
These nonlinear behaviors not only display very rich physics 
but can also be exploited to enable advanced functionalities, 
such as shape morphing,[14,15] energy absorption[3,16–18] and pro-
grammability.[19–21] Although it is well known that such func-
tionalities can be tuned by altering the underlying geometry, 
the identification of architectures that result in a target non-
linear response is a non-trivial task.

Robust and efficient algorithms have been established 
to guide the design of structures with target response in the 
linear regime. These include gradient based methods such 
as shape[22] and topology[23] optimization, as well as machine 
learning algorithms.[24–27] However, such approaches cannot be 
directly applied to the inverse design of nonlinear mechanical 
metamaterials. This is because the energy landscapes of the 
nonlinear systems typically display multiple minima separated 
by large energy barriers and, therefore, are very challenging 
to navigate. To efficiently explore such energy landscapes, 
metaheuristic algorithms such as evolution strategies,[28–30] 
genetic algorithms[31] and particle swarm optimization,[32] have 
been successfully used. Further, since these algorithms require 
solving many times the forward problem, recent efforts have 
focused on reducing their computational cost by coupling them 

Materials with target nonlinear mechanical response can support the design 
of innovative soft robots, wearable devices, footwear, and energy-absorbing 
systems, yet it is challenging to realize them. Here, mechanical metamate-
rials based on hinged quadrilaterals are used as a platform to realize target 
nonlinear mechanical responses. It is first shown that by changing the shape 
of the quadrilaterals, the amount of internal rotations induced by the applied 
compression can be tuned, and a wide range of mechanical responses is 
achieved. Next, a neural network is introduced that provides a computation-
ally inexpensive relationship between the parameters describing the geometry 
and the corresponding stress–strain response. Finally, it is shown that by 
combining the neural network with an evolution strategy, one can efficiently 
identify geometries resulting in a wide range of target nonlinear mechanical 
responses and design optimized energy-absorbing systems, soft robots, and 
morphing structures.

Research Article

1. Introduction

From wearable devices and energy-absorbing systems to scaf-
folds and soft robots, many applications would benefit from 
the inverse design of materials with a target nonlinear mechan-
ical response. For example, to enhance tissue regeneration, 
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with machine learning models trained to solve the forward 
problem.[33–38]

Here, we present a framework to design mechanical meta-
materials with target nonlinear response. Our starting point is a 
metamaterial based on hinged rotating squares (see Figure 1a), 
which has recently attracted significant interest as it displays 
effective negative Poisson’s ratio[39–41] and supports the propaga-
tion of solitary pulses.[42–44] We first show that changes in the 
shape of the quadrilateral units lead to a wide range of mechan-
ical responses and identify the key ingredients governing such 
behaviors. Then, we use neural networks to accurately learn 
the relationship between the geometry of the metamaterials 
and their nonlinear mechanical response. Finally, we combine 
neural networks with an evolution strategy to efficiently identify 
geometries that exhibit target nonlinear stress–strain behav-
iors. The proposed neural accelerated evolution strategy holds 
potential for a range of applications that benefit from systems 
with a target nonlinear mechanical behavior, as demonstrated 
by the design of energy absorbing systems, soft robots and 
morphing structures.

2. Our Physical Platform

We start by testing under uniaxial compression two elastomeric 
metamaterials comprising a 10 × 8 array of hinged quadrilat-
eral units flanked by two horizontal strips of solid material 
(Figure  1a). Both structures are realized by repeating a unit 
cell that consists of 2 × 2 units connected at their vertices by 
thin beam-like ligaments with width and length of 1 mm. The 
unit cell of one sample comprises four identical squares with 
center-to-center distance a  = 10 mm, while that of the other 
consists of four different irregular quadrilaterals obtained by 
randomly perturbing the position of the squares vertices (while 
maintaining a unit cell size of 2a in both horizontal and ver-
tical directions—Figure 1a and Sections S1 and S2, Supporting 
Information). In Figure  1b we show snapshots of the two 
structures at an applied compressive strain ε  =  −0.1, while in 
Figure  1c we report the stress–strain curves recorded during 
our tests. We find that, although in both samples the deforma-
tion localizes at the beam-like hinges (which are identical in 
the two samples), their mechanical responses are remarkably 
different. In the sample with square units the buckling (and 
the subsequent bending) of the beam-like ligaments triggered 
at a critical compressive strain ε ≈ −0.02 makes all squares to 
alternatively rotate in clockwise and counter-clockwise direc-
tion.[39,45,46] The shrinking associated with such collective rota-
tional motion accommodates most of the additional applied 
strain and therefore limits the amount of compression in the 
vertical ligaments, ultimately leading to a stress plateau. By 
contrast, geometric frustration prevents rotation of the units in 
the sample comprising irregular quadrilaterals. It follows that 
for the sample comprising irregular quadrilaterals the applied 
deformation is almost entirely accommodated by the axial com-
pression of the ligaments aligned along the vertical direction, 
resulting in a stiff and near-linear response.

The results of Figure  1 show that the shape of the quadri-
laterals has a profound effect on the nonlinear mechanical 
response of the resulting metamaterial (see also Movie S1, 

Supporting Information). To systematically explore such effect, 
we make use of numerical simulations. In particular, since 
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Figure 1.  a) Top row: Unit cells of two structures comprising 2 × 2 quadri
lateral units connected at their vertices by thin beam-like ligaments. The 
ligaments can be modeled using a combination of three linear springs 
with stiffness kl, ks, and kθ. Bottom row: Pictures of the corresponding 
samples in the initial undeformed configuration. b) Top row: Pictures of 
the samples under ε = −0.1 compression strain. Bottom row: Numerical 
snapshots of the samples under ε = −0.1 compression strain. The color 
here indicates the local rotation of the quadrilaterals. c) Stress–strain 
response of the samples as measured in experiments (green dashed 
lines) and predicted by the discrete model (black lines).
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our experiments indicate that under uniaxial compression the 
quadrilateral units remain rigid and the deformation localizes 
at the hinges, the nonlinear behavior of our structures can be 
described using a discrete model comprising rigid units con-
nected at their vertices by a combination of three springs[45,46] 
(see Figure 1a): (i) a linear spring with stiffness kl = 0.47 N mm−1 
to capture the longitudinal response of the hinges; (ii) a linear 
spring with stiffness ks = 0.16 N mm−1 to model their shearing; 
and (iii) a nonlinear hardening rotational spring that exert 
a torque M  = kθ(Δθ  + γΔθ3) (where Δθ is the relative rotation 
between the connected quadrilaterals, kθ  = 0.088  N mm and 
γ = −0.2) to capture their bending (see Section S3, Supporting 
Information). By imposing force equilibrium at each unit, we 
derive a system of coupled nonlinear equations that we numeri-
cally solve to obtain the response of the structure. Note that in 
this study we consider metamaterials with out-of-plane thick-
ness large enough to prevent out-of-plane deformation and, 
therefore, limit the analyses to in-plane deformation. To test 
the relevance of our discrete model, we first compare its predic-
tions to the experimental results reported in Figure 1 (see also 
Movie S1, Supporting Information). We find a very good agree-
ment between our experimental and numerical results both in 
term of stress–strain curves and deformation field, confirming 
the validity of our model.

Next, we create 7500 different unit cells by randomly 
choosing the position of the quadrilateral vertices while pre-
serving periodicity (see Figure 2a and Section  S4, Supporting 
Information) and use our discrete model to simulate the 
mechanical response of the resulting metamaterials under 
uniaxial compression. In Figure  2b we report the numeri-
cally predicted stress–strain curves for all generated architec-
tures. We find that a variety of nonlinear mechanical responses 
emerge. These include near-linear behaviors with a wide range 
of tangent moduli (see curves (i) and (ii) in Figure 2b for the 
upper and lower limits) as well as highly nonlinear behaviors 
that exhibit strain-softening and sudden load drops (see curves 
(iii) and (iv) in Figure 2b for representative examples). Further, 
our numerical results indicate that such different responses 
are accompanied by distinct deformation modes (see also 
Movie S2, Supporting Information). Focusing on the four archi-
tectures whose response is highlighted in Figure  2b, we find 
that at ε = −0.1 the rotations of the units are relatively small for 
the two structures that display near-linear responses and much 
larger for the two exhibiting nonlinear behaviors (see Figure 2c 
(top) and Movie S2, Supporting Information). Importantly, the 
connection between internal rotations and nonlinearity is not 
limited to these four architectures. As shown in Figure  2d, 
for all 7500 metamaterials there is a correlation between the 
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Figure 2.  a) Unit cells generated by randomly perturbing the position of the quadrilaterals vertices, while preserving periodicity. b) Stress–strain curves 
predicted by the discrete model for 7500 different metamaterials realized by tessellating different unit cells. Four representative stress–strain curves are 
highlighted. These include (i)-(ii) near-linear behaviors with a wide range of stiffness; (iii) stress–strain curves with an initial linear regime followed by a 
plateau; and (iv) stress–strain curves displaying sudden drops in force. The upper bound σ = E*ε is shown as a dashed black line. c) Numerical snap-
shots of the structures highlighted in (b) at ε = −0.1. The color in the top row indicates the rotation of the quadrilaterals, while the color in the bottom 
row indicates the rotation-induced shrinking. d) Average nonlinearity (err[σ,σfit,ε]) versus average rotation (〈θ[i,j]〉) for all 7500 metamaterials at different 
level of applied strain. e) Nominal stress (σ) versus average rotation (〈θ[i,j]〉) for all 7500 metamaterials at different levels of applied strain. f) Nominal 
stress (σ) versus strain accommodated by a column of vertical ligaments (ε − Δεrot) for all 7500 metamaterials at different levels of applied strain.
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average rotation of the units, 〈θ [i,j]〉 (where θ [i,j] denotes the 
rotation of the [i,j]-th unit), and the amount of nonlinearity dis-
played by the corresponding stress–strain curve. Note that the 
latter is quantified using the normalized root mean squared 
error between the stress–strain curve and its best linear fit, 
err[σ,σfit,ε], where σfit = Eε represents the best linear fit to the 
curve and 
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with the integrals being evaluated numerically. Near-linear 
responses (for which err[σ,σfit,ε] → 0) are accompanied by 
small rotations of the units, whereas large internal rotations 
lead to highly nonlinear behaviors characterized by large values 
of err[σ,σfit,ε].

Differently, we find that there is no correlation between 
〈θ[i,j]〉 and the the recorded nominal stress, σ (see Figure  2e). 
This is because small internal rotations can be amplified by 
the geometry of the quadrilaterals and result in large amount 
of shrinking along the vertical direction (see Figure 2c-ii). Such 
rotation-induced shrinking reduces the level of axial compres-
sion in the ligaments and therefore is expected to affect the 
measured nominal stress. To quantify this effect, we define the 
rotation-induced shrinking along the vertical direction for the 
[i,j]-th unit as
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where εy i j ( )top
[ , ]  and εy i j ( )b

[ , ]  denote the y-coordinate of the 
top and bottom vertex of the [i,j]-th quadrilateral at ε. The 
numerical snapshots reported in Figure  2c (bottom) confirm 
that ε∆ i j

rot
[ , ]  can be large even in structures that display small 

internal rotations (see Figure 2c-ii). As a matter of fact, there 
is a strong correlation between σ and the average rotation-
induced shrinking, ε∆ i j

rot
[ , ] . More specifically, since the 

compressive strain accommodated by a column of vertical liga-
ments is given by ε ε− ∆ i j

rot
[ , ] , we find that for all considered 

metamaterials

σ ε ε( )≈ ∗ − ∆E i j
rot
[ , ]

� (3)

where E* is the effective Young’s modulus of the metamaterial 
in the absence of rotations (see Figure 2f). Note that E* = 10kl/
(9b), where b denotes the out-of-plane thickness of the meta-
material, since our structure comprises 10 columns of vertical 
ligaments with longitudinal stiffness kl, each consisting of 9 lig-
aments arranged in series. It follows from Equation (3) that the 
stiffest response for the considered class of metamaterials can 
be achieved in the absence of rotations (i.e., for ε∆ i j

rot
[ , ]  = 0) and 

is given by σ = E*ε (see dashed line in Figure 2b). As such, our 
results indicate that by tuning the amount of rotation-induced 
shrinking upon compression we can successfully manipulate 
the stress–strain curves of the considered class of metamate-
rials. Importantly, this tuning can be accomplished by varying 
the geometry of the quadrilateral units.

3. Neural Networks

While in Figure  2 we focus on the mechanical response of 
7500 architectures, our numerically generated stress–strain 
curves enable prediction of the behavior of metamaterials real-
ized out of arbitrary unit cells. This is because such data can 
serve as offline training of a machine-learning (ML) model that 
provides a computationally inexpensive relationship between 
the parameters describing the unit cell geometry and the cor-
responding stress–strain response. To this end, we represent 
the p-th unit cell in our database as a 16-dimensional vector 
XX = v vp p p p pµ µ �[ , ,…, , ]1 1 8 8 , where α

pµ  and αvp  represent the pertur-
bations in horizontal and vertical directions applied to its α-th 
independent vertex for the p-th unit cell  (see Section  S1, Sup-
porting Information) and the corresponding stress–strain curve 
as a 100-dimensional vector σ σ σ= −p p p

�[ (0),…, ( 0.1)] , which con-
tains the stress values at 100 equally spaced strain points. Note 
that, although we simulated 7500 metamaterials, our dataset 
contains a total of N = 30 000 datapoints, since the response of 
all designs remains unaltered when they are reflected over the 
x-axis, the y-axis and in the origin (see Figure 3a). Out of the 
expanded dataset, we randomly choose Ntr = 0.8N datapoints for 
training and the remaining Ntest = 0.2N for testing.

To facilitate training of the ML model, we reduce the dimen-
sionality of the stress vectors by using principal component 
analysis (PCA).[47] In particular, we describe the stress–strain 
curve of the p-th design via its first 10 principal components, 
σ p

PC10. Note that this leads to an average reconstruction error of 

∑ σ σ −
=N p

N

p p

1
err[ , , 0.1]

tr 1

R
tr

 = 0.3 %, where σ p  denotes the true stress 

vector and σ p
R the reconstructed one from the first 10 principal 

components (Section S5, Supporting Information).
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Figure 3.  a) Our NN architecture has four hidden layers, each comprising 
200 neurons. A 16-dimensional vector pXX  is fed to the NN that is trained 
to predict the lower-dimensional representation of the corresponding 
stress vector σ PC10

p . b) Comparison between the stress–strain curves pre-
dicted by our discrete (black solid lines) and NN (dashed blue lines) 
models for four geometries that are part of the test dataset.
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To predict the lower dimensional representation of the stress 
vector, σ p

PC10 , for a given geometry, XX p , we use a neural network 
(NN) architecture with four hidden layers, each comprising 
200 neurons (see Figure 3a and Section S6, Supporting Infor-
mation). We train the NN by selecting the neuron weights and 
biases that minimize

XX∑∑β σ( )= −
= =p

N

s

s s p p sL F ( )
1 1

10

,
PC 2tr

10 � (4)

where σ p s,
PC10  is the s-th component of σ p

PC10 , XX =pF ( )   
XX XXp pF F �[ ( ),…, ( )]1 10  denote the corresponding NN predictions 

and βs is the variance explained in the s-th principal compo-
nent (Section S5, Supporting Information). Finally, to evaluate 
the accuracy of our trained NN, we reconstruct the stress–
strain response from XX pF ( )  and calculate the average relative 

error on the test dataset as ∑ σ σ −
=N p

N

p p

1
err[ , , 0.1]

test 1

NN
test

, where σ p
NN  is 

the stress vector reconstructed from XX pF ( ). We find that the 
trained NN accurately predicts the stress–strain curves associ-
ated to unseen designs, with an average relative error of 4.8%. 
As examples, in Figure  3b we focus on four designs that are 
part of the test dataset and display distinct mechanical behav-
iors. The comparison between the stress–strain curves pre-
dicted by our discrete and NN models for these four geometries 
indicates that our trained NN can capture all behaviors that are 
representative of the considered class of mechanical metama-
terials, with discrepancies that are more accentuated for the 
stress–strain curves displaying sharp drops in force. This is 
because such sharp drops are induced by the snapping of a few 

unit cells (see numerical snapshot at ε = −10 in Figure 2c-iv)—a 
phenomenon that is known to be very sensitive to geometric 
perturbations[48] and, therefore, difficult to predict.

4. Inverse Design

Our trained NN enables us to efficiently determine the mechan-
ical response of arbitrary metamaterials. However, since the 
connection between the geometry of the unit cells and the 
mechanical response of the corresponding structure is not trivial, 
identification of metamaterials with target behavior requires an 
efficient inverse design strategy. Toward this end, as shown in 
Figure 4a, we couple our trained NN with an evolution strategy 
(ES)—a type of stochastic global optimization algorithm inspired 
by the biological theory of evolution.[28] To test our approach, we 
focus on four distinct target behaviors (see Figure 4b)
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where σsoft denotes the softest response within the dataset and 
"t indicates "target". Note that σ t

( i)  represents the stiffest pos-
sible response for the considered class of metamaterials (see 
Equation  (3)), whereas σ t

( ii)  describes a near-linear stress–
strain curve that is 20% softer than the softest one within the 
dataset. Further, σ t

( iii ) represents a smooth stress–strain curve 
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Figure 4.  a) Schematic representing the proposed inverse design algorithm based on a neural accelerated evolution strategy. b) The four target stress–
strain curves considered in this study. c) Evolution of σ σ −max err[ , , 0.1]t

NN
p p  during ES iterations for the four considered targets. d) Target response (red 

dashed line), top picks from dataset (black lines) and stress–strain curves predicted by our trained NN (blue lines) and our discrete model (purple 
lines) for the optimized designs. The designs that minimize σ σ −err[ , , 0.1]t

DM
p  are shown as inset. For each of these designs we also show numerical 

and experimental snapshots at ε = −0.1. The color in the numerical snapshots indicates the local rotation of the quadrilaterals.
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that display a strain-induced stress drop more accentuated 
than those found in the dataset and σ t

( iv ) is characterized by a 
sharp drop in stress at an unseen location. To identify geom-
etries leading to these target behaviors, we start by selecting 
μ  = 100 stress–strain curves from our dataset that mini-
mize σ σ −perr[ , , 0.1]t . As expected, no response in the dataset 
closely matches our four target behaviors (see black lines in 
Figure 4d)—with a minimum error between the top picks and 
the target ones equal to: (i) 11%, (ii) 25%, (iii) 13% and (iv) 12%. 
Next, in an attempt to reduce these errors, we generate λ = 49 
new candidate geometries (the children) from each of the unit 
cells associated to these solutions (the parents) by randomly 
moving their eight independent vertices within boxes with 
edge of 0.1a centred around them. Further, to better explore the 
design space, we generate 5000 completely arbitrary unit cells 
that compete with the parents and children for consideration 
in the next iteration (see Figure  S17, Supporting Information 
for a discussion on the benefits of adding these 5000 arbitrary 
unit cells). The parents, children, and arbitrary unit cells form 
a set of 10 000 geometries, whose stress–strain curves are deter-
mined using our trained NN. Out of this set, we then select the 
parents for the next iteration by choosing the μ = 100 designs 
that minimize σ σ −perr[ , , 0.1]t

NN  and we continue this muta-
tion/generation and selection process until there are μ  = 100 
designs for which σ σ − <p pmax (err[ , , 0.1]) 1%t

NN , or 50 itera-
tions are reached. It is important to note that the trained NN 
enables us to largely reduce the computation time required to 
identify the optimal designs, since it takes only 0.2 s for the 
NN to evaluate 10000 designs (whereas it takes 23.2 days for the 
the discrete model to evaluate 10000 designs).[49] In Figure  4c 
we report the evolution of σ σ −perr[ , , 0.1]t

NN  for the best per-
forming μ  = 100 designs over the course of each iteration, 
whereas in Figure  4d we show as blue lines the stress–stress 
curves predicted by our trained NN for the optimized μ = 100 
designs identified by the ES. We find that the error between 
the optimal curves and the target ones is largely reduced for 
the considered first three targets. Differently, the reduction in 
error is less significant for the fourth target response, as 10 
principal components are not enough to capture a stress–strain 
curve with a sharp drop in load (see blue lines in Figure 4d-iv). 
Although such error could be reduced by considering a larger 
number of principal components to represent the stress–strain 
curve, it is important to point out that this would not neces-
sarily translate to a better solution. This is because the trained 
NN introduces an error in the estimation of their mechanical 
responses, which becomes more accentuated for designs that 
are very different from those included in the training dataset. 
As a matter of fact, when we use the discrete model to sim-
ulate the final μ  = 100 designs identified by ES, we find an 

average error ∑ σ σ −
p

p pµ
1

err[ , , 0.1]NN  = 15% on these optimized 

designs (see purple lines in Figure 4d)—much higher than that 
obtained on the test set (4.8%). However, despite the error intro-
duced by the NN, the μ = 100 optimized designs identified by 
ES display stress–strain curves that are on average much closer 
to the target curves than the close matches from the dataset 
(black curves). More specifically, we find that the minimum 
error between σt and the stress–strain curve predicted by the 
discrete model for the μ optimized geometries, σ p

DM, is reduced 

to: (i) 1.9%, (ii) 4.7%, (iii) 6.6%, and (iv) 4.5% (the designs that 
best match the target curves are shown as thick purple curves 
in Figure 4d).

Next, we physically fabricate the optimized designs that 
closely match the target curves and report the experimentally 
recorded stress–strain curves (green dashed lines) as well as 
snapshots of the samples at ε = −0.1 in Figure 4d (see also Movie 
S3, Supporting Information). Despite the unavoidable imper-
fections introduced during fabrication and testing, the recorded 
stress–strain curves closely match the target ones. Focusing on 
the first target, we find that our optimization framework identi-
fies a geometry that prevents internal rotations under compres-
sion and, as predicted by Equation (3), results in the stiffest pos-
sible response. As for the second target, the inversely designed 
metamaterial comprises highly tilted (almost flat) elongated 
quadrilaterals that maximize the rotation-induced shrinking 
and therefore lead to a very compliant response. Differently, 
the optimized geometry for the third target consists of elon-
gated quadrilaterals that are almost aligned along the vertical 
direction. Upon compression these units gradually rotate (see 
Figure  4d-iii), so that the structure approaches the optimized 
geometry for the second target and, therefore, becomes much 
softer. Finally, the fourth optimized design comprises two rows 
of quadrilaterals that snap at the target strain, yielding a sudden 
load drop.

5. Conclusions

We have introduced a neural accelerated evolution 
strategy to identify mechanical metamaterials with target 
nonlinear response.

These optimized metamaterials provide opportunities for the 
design of a wide range of smart structures, including energy-
absorbing systems and soft robots. To investigate the energy-
absorbing performance upon impact of our inversely designed 
metamaterials, we conduct drop tests on the optimized struc-
tures reported in Figure  4. More specifically, we drop a cir-
cular acrylic disk (with mass mdisk = 100 g and diameter ddisk = 
100 mm) onto their top surface from an height of 40 cm and 
measure the rebound height after the impact. As shown in 
Figure 5a and Figure S3, Supporting Information, we find that 
after the impact the disk bounces back to a height of 22.0, 15.3, 
11.5 and 2.5 cm for the four considered structures, resulting in 
an absorption efficiency of 45%, 62%, 71% and 94%, respec-
tively (see Section  S2.C, Supporting Information for more 
details). The superior performance of the architecture opti-
mized to match σ(iv) confirms that snapping provides a simple 
yet effective mechanism to realize reusable energy-absorbing 
materials[50] and further indicate that our numerical strategy 
can be harnessed to optimize their absorption efficiency.

Additionally, while in this study we have focused on target 
nonlinear stress–strain responses, our neural accelerated evolu-
tion strategy can be readily applied to other nonlinear proper-
ties, providing a platform to facilitate the design of soft robots 
and actuators. For example, it has been shown that a soft robot 
capable of moving through a channel when actuated with a 
single input can be realized by combining two flexible struc-
tures with Poisson’s ratio of equal magnitude but opposite 

Adv. Mater. 2022, 2206238
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sign.[51] However, since mechanical metamaterials typically 
exhibit varying Poisson’s ratio in the nonlinear regime,[52,53] 
the efficiency of such robots largely varies with the width of the 
channel (Figure 5b(iv)). To overcome this limitation, we inverse 
design two architectures with constant Poisson’s ratio ν  =  ±1 
over a large range of deformations (i.e., for −0.1 < ε < 0.1) via our 
neural accelerated evolution strategy. As shown in Figure 5b(iv), 
the identified optimal structures lead to a soft robot with inch-
worm locomotion that is less affected by the width of the 
channel (see Section  S8.A, Supporting Information for more 
details). Finally, our neural accelerated evolution strategy can 
be exploited to identify structures capable of target deformation 

upon application of an external stimulus, opening avenues for 
the inverse design of metamaterial-based soft actuators. To 
demonstrate this point, we consider a structure comprising 8×2 
unit cells and assume that each quadrilateral unit expands uni-
formly under an increasing temperature (Figure  5c(i)). When 
the center-to-center distance of the units on the left boundary 
is fixed, the structures built out of the 7500 unit cells consid-
ered in this study bend into a variety of configurations upon 
heating (Figure  5c(ii)). Remarkably, we find that also in this 
case the neural network is able to learn the relation between 
the unit cell design and the deformed configuration and can be 
combined with evolution strategy to efficiently inverse design 

Adv. Mater. 2022, 2206238

Figure 5.  a) Energy absorption: Experimental images taken during the drop tests immediately before contact (left), at contact (center) and at the 
maximum height at which the disk bounces back after impact (right) for the metamaterial optimized to match σ t

(i) (top), σ t
(ii) (center) and σ t

(iv) 
(bottom). For these three structures we measure a contact time of 33, 75 and 96 ms and the height of the first bounce after the impact to be 22.0, 15.3, 
and 2.5 cm, resulting in an absorption efficiency η = 45%, 62%, and 94%, respectively. b) Inverse design of soft robots that exploit auxetic behavior.  
(i) Evolution of the effective Poisson’s ratio ν as a function of the applied strain ε predicted by the discrete model for 7500 different metamaterials 
realized by tessellating different unit cells. The neural accelerated evolution strategy is used to inverse design two architectures with constant Poisson’s 
ratio ν(ε) = ±1 for ε ∈ [−0.1,0.1]. (ii) Numerical snapshots of the soft robot realized by connecting the two inversely designed metamaterials though a 
linear actuator moving into a channel with width Wch = 0.99Nxa at time t = 0.02 s, 0.48 s, 0.52 s, and 0.98 s. The color here indicates the local rotation 
of the quadrilaterals. (iii) Relative displacement imposed by the linear actuator (black line) and displacement of the center of mass of the lower (green 
line) and upper (blue line) blocks as a function on time. (iv) Evolution of the displacement recorded at the end of each cycle, dstep (normalized by the 
actuator stroke da) as a function of Wch/(Nxa) for the initial design (yellow markers) and the optimized design (magenta markers). c) Inverse design of 
structures capable of target deformations upon heating. (i) We consider a structure comprising 8×2 unit cells and assume that each quadrilateral unit 
expands uniformly under an increasing temperature. To trigger bending, we fix the center-to-center distance of the units on the left boundary. (ii) The 
distribution of the center lines of 7500 different unit cell deigns at εth = 0.1 (top) and 0.2 (bottom). The blue dashed lines represent the target curves 
at different thermal strains. (iii) The inverse designed metamaterial is able to closely match the target center lines at εth = 0.1 and 0.2.
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architectures capable of supporting multiple target deformation 
modes (see Figure 5c(iii) for a structure that bends toward the 
left for a thermal expansion ε = 10%th  and toward the right for 
ε = 20%th —see Section S8.B, Supporting Information for more 
details).

To conclude, since the response of the inversely designed 
metamaterials is scale- and material-independent, we envisage 
that our strategy could be applied to the design of the next gen-
eration of flexible structures with target nonlinear behavior, 
ranging from large-scale energy-absorbing systems to small-
scale robotic components.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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