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Dynamic Flexoelectric Actuation
and Vibration Control of Beams
A flexoelectric cantilever beam actuated by the converse flexoelectric effect is evaluated
and its analytical and experimental data are compared in this study. A line-electrode on
the top beam surface and a bottom surface electrode are used to generate an electric field
gradient in the beam, so that internal stresses can be induced and applied to distributed
actuations. The dynamic control effectiveness of the beam is investigated with a mathe-
matical model and is validated by laboratory experiments. Analyses show that the actua-
tion stress induced by the converse flexoelectric effect is in the longitudinal direction and
results in a bending control moment to the flexoelectric beam since the stress in the
thickness is inhomogeneous. It is found that thinner line-electrode radius and thinner
flexoelectric beam lead to larger control effects on the beam. The position of the line-
electrode on the top surface of the beam also influences the control effect. When the line-
electrode is close to the fixed end, it induces a larger tip displacement than that is close
to the free end. Analytical results agree well with laboratory experimental data. This
study of flexoelectric actuation and control provides a fundamental understanding of
flexoelectric actuation mechanisms. [DOI: 10.1115/1.4039238]

Introduction

Cantilever beam model is among the most frequently used
structures in engineering applications, such as wings, antennas,
robot arms, etc. A systematic study on the dynamic control of a
cantilever beam has been conducted by Soedel [1] and Qatu [2].
In last few decades, many studies of precise actuation and vibra-
tion control of cantilever beams with smart-structure technologies
were reported. Among these, piezoelectric materials were the
most rapidly developing materials used on sensors, actuators, and
active control of flexible beam models [3–7]. Bergamini et al. [8]
found that piezoelectric resonators can work as variable stiffness
elements to control the band structure of a phononic crystal. Tzou
and Gadre [9] proved the actuation effectiveness of a multilayered
thin shell coupled with an active distributed polymeric piezoelec-
tric polyvinylidene fluoride actuator both theoretically and
experimentally.

Unlike the piezoelectricity, flexoelectricity is an intrinsic elec-
tromechanical coupling effect that does not rely on prepoling and,
the aging problems encountered in piezoelectric dielectric after
prepolarization could avoid in flexoelectric materials, thus, makes
the flexoelectric dielectrics much more convenient for practical
application. In principle, the flexoelectric effect could exist in
most dielectrics; therefore, it is possible to discover or synthesize
new flexoelectric materials with larger coupling coefficients for
engineering application. With these advantages, flexoelectric
materials show the potential as a substitution to piezoelectric
materials to achieve precision actuation and active vibration
control.

It is worth noting that there are two effects of the flexoelectric-
ity: the direct flexoelectricity and the converse flexoelectricity.
The direct flexoelectric effect describes the mechanism of a polar-
ization response induced by the inhomogeneous mechanical fields
(or strain gradients). Based on the direct flexoelectric effect, a
direct curvature sensing measurement was demonstrated in a four-
point bending test of a beam with bonded barium strontium tita-
nate (BST) curvature sensors under different applied loads with
low time-harmonic frequencies [10]. The flexoelectric barium
strontium titanate cantilever was also used to design acceleration
sensor by bonding the barium strontium titanate layer onto a steel
substrate [11]. A new type of microphone using flexoelectric bar-
ium strontium titanate was developed [12]. Experiments of dis-
tributed sensing signals of beams suggested that distributed
flexoelectric sensors were competent to provide the mode shape
of strain gradients [13]. The converse flexoelectric effect
describes the phenomenon of mechanical stress induced by the
inhomogeneous polarization (or electric field gradient) [14–17].
The converse flexoelectric effect could apply to design flexoelec-
tric actuators and controllers to actuate and control engineering
structures if inhomogeneous electric field being established. In
open literatures, one can find that asymmetric electrode configura-
tion [18], trapezoid flexoelectric block [19], and comb electrode
[20] were used to generate electric filed gradients. An atomic
force microscope probe was also employed to generate inhomoge-
neous electric field to achieve beam vibration control [21].

In the current study, a line-electrode on the top surface of a
flexoelectric beam together with a bottom surface electrode layer
are used to achieve dynamic actuation and control of the cantile-
ver beam by the converse flexoelectric effect. Both theoretical
analysis and laboratory experiments are presented. To evaluate
the control effects, key design parameters, e.g., line-electrode
radius, flexoelectric beam thickness, and the line-electrode
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position, are examined with respect to induced stresses, bending
moments and dynamic tip displacements. Laboratory experiments
conducted with different line-electrode locations are used to vali-
date the theoretical predictions.

Mathematical Model

To actuate a flexoelectric cantilever beam, based on the con-
verse flexoelectric effect, an inhomogeneous electric field is
needed. A line-electrode is used to generate the electric field,
which, in turn, actuates the flexoelectric beam. The flexoelectric
cantilever beam and the corresponding electrodes are illustrated in
Fig. 1, in which coordinates x and z, respectively, define the longi-
tudinal and transverse directions. The length and width of the
beam are denoted by L and b, respectively; R is the radius of the
line-electrode and x�0 is the position of the line-electrode on the
top surface in the longitudinal direction.

A voltage /a is applied between the line-electrode placed on
the top surface of the flexoelectric beam and the surface electrode
layer below. For the beam considered here, both the length L and
the width b are much larger than the beam thickness, i.e., h� L
and h� b, and the thickness is much larger than the radius of the
line-electrode, i.e., R� h. Thus, the electric field between the
line-electrode and the lower surface electrode can be assumed to
be the same as the electric field between an infinite long cylindri-
cal electrode and an infinite flat electrode. Note that the line-
electrode cannot be regarded as infinitely thin, i.e., R 6¼ 0. In fact,
the radius of the line-electrode, as discussed later, determines the
actuation effect of the flexoelectric beam.

Flexoelectric Actuation Using Line-Electrodes. By regarding
both the line-electrode and the lower surface electrode as infinite
in the y direction, the model considered here can be reduced from
a three-dimensional case to a two-dimensional electric field prob-
lem as illustrated in Fig. 2. The method of image charges (or the
method of images) [22] is introduced to solve this electric field
problem. When an actuation voltage is applied between the

line-electrode and the lower surface electrode, the line-electrode
is charged to Q per unit length, i.e., the line density on the line-
electrode is Q. Assuming the charge on the line-electrode is posi-
tive and the potential of the lower surface electrode is zero (i.e.,
grounded), Q would induce a negative charge on the nearby sur-
face of the lower electrode.

From a mathematical perspective, the problem is to solve Pois-
son’s equation in the z � �ðh=2Þ region with the boundary condi-
tions of the potential on the surface of lower electrode being zero
and the surface of line-electrode being equipotential. It can be
guaranteed by the first uniqueness theorem that there is only one
solution for the electric field. Thus, one could assume a solution
which satisfies both Poisson’s equation and the corresponding
boundary conditions [22]. Then, such a solution would be a suita-
ble solution. Introducing a line-electrode image charged with �Q
and placing its center at ðx�0;�ð3h=2Þ � RÞ, removing the lower
electrode, one could prove that the electric field of this configura-
tion, illustrated in Fig. 2, is identical to the original. Since the
image line-electrode with �Q appears, it would change the poten-
tial field on the surface of line-electrode. In another words, the
charge on the surface of the line-electrode has to redistribute to
maintain the line-electrode surface an equipotential surface. Such
boundary condition can be satisfied by using the method of images
for the line-electrode resulting in a charge Q1 ¼ QR=ð2Rþ 2hÞ
located at ðx�0; ðh=2Þ þ R� R1Þ, where R1 ¼ R2=ð2Rþ 2hÞ [22].
It can be proved that this approach would keep the surface of line-
electrode equipotential. Note that the charge at the center of the
line-electrode is reduced to Q� Q1, due to the conservation of
charges in the line-electrode meanwhile. While the appearance of
the charge Q1 would make the lower electrode plane nonequipo-
tential until it images back in the plane. This process, as one may
notice, continues infinitely and a sequence of image charges is
obtained as Qn. The recursion formula is given by
Qn ¼ ðR=DnÞQn�1, where Dn � 2hþ 2R, and thus,
Qn=Qn�1 � R=2ðhþ RÞ. Recall that in this particular case R� h,
thus Qn � Qn�1 and this indicates that the sequence of image
charges decays rapidly. It is assumed here that only the first image
charge inside the line-electrode is significant enough to induce
flexoelectric actuation.

In summary, this problem is simplified to obtain the electric
field generated by three lines with charges Q� Q1, �Q, and Q1,
as depicted in Fig. 2. The expression of potential field / is
obtained first by substituting the potential field generated by these
three line charges as [22]
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2pe

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x�0ð Þ2 þ z� h

2
� R

� �2
s0@

1
A

þ Q

2pe
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x�0ð Þ2 þ zþ 3h

2
þ R

� �2
s0@

1
A

� Q1

2pe
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x�0ð Þ2 þ z� h

2
� Rþ R2

2Rþ 2h

� �2
s0@

1
Aþ C

(1)

where C is an arbitrary constant in the potential expression, since
the zero potential point has not been clearly defined. To obtain the
specific magnitude of potential field, the line charge density Q
must be defined. Note that the potential difference between the
lower electrode and the line-electrode must be the actuation volt-
age between them, i.e., /a. Thus, calculating the potential differ-
ence via Eq. (1) yields the relationship between the applied
voltage and the unknown line density. Utilizing the expression of
the potential field, substituting Q1 by QR=ð2Rþ 2hÞ gives the
potential difference

Fig. 1 Schematic diagram of flexoelectric beam model

Fig. 2 Solution of the two-dimensional electric field problem
with the method of images
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From Eq. (2), one obtains the value of charge’s line density. Substituting the expression of Q, i.e., solving from Eq. (2), into potential
field yields the electric field distribution
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The magnitude of the potential field is determined by the summation of the three line charges shown in Fig. 2. Note that only the trans-
verse electric field gradient is required to induce the flexoelectric stress and actuation in the cantilever beam [23]. The transverse electric
field can be obtained by taking the partial derivative in the transverse direction of the potential expression as

Ez x; zð Þ ¼ �
@/
@z
¼ /a

ln
2hþ R

hþ R

� �
hþ R

R

� � Rþ2h
2Rþ2h 2 Rþ hð Þ2 � R2

2R Rþ hð Þ � R2

 ! R
2Rþ2h

2
4

3
5

Rþ 2h

2Rþ 2h
z� h

2
� R

� �

x� x�0ð Þ2 þ z� h

2
� R

� �2
 !� zþ 3h

2
þ R

� �

x� x�0ð Þ2 þ zþ 3h

2
þ R

� �2
 !þ

R

2Rþ 2h
z� h

2
� Rþ R2

2Rþ 2h

� �

x� x�0ð Þ2 þ z� h

2
� Rþ R2

2Rþ 2h

� �2
 !

8>>>><
>>>>:

9>>>>=
>>>>;

(4)

With the transverse electric field induced by the line-electrode,
one derives the longitudinal stress induced by the electric field
gradient defined by the converse flexoelectric equation

Ta
xx ¼ p12

@Ez

@z
(5)

where Ta
xx indicates the longitudinal stress induced by the inhomo-

geneous electric field generated by the line-electrode and the super-
script a denotes the actuator term (i.e., the electrodes/flexoelectric
beam system in this case); p12 is a flexoelectric constant. With the
induced stress expression, the flexoelectric actuation membrane
force can be obtained by calculating the overall stress contribution
along the transverse direction and it can be expressed as

Na
xx ¼

ðh
2

�h
2

Ta
xx dz (6)

where Na
xx is the membrane force induced by the actuator. The

bending control moment Ma
xx induced by the actuator can also be

calculated by integrating the product of the actuation stress and
the corresponding moment arm, i.e., the distance from the beam’s
neutral layer to a local point

Ma
xx ¼

ðh
2

�h
2

Ta
xxz dz (7)

With the specific expression of actuation membrane force and
bending control moment induced by the line-electrode, the actua-
tion effect based on flexoelectricity is discussed later.

Dynamics of Cantilever Beam. The dynamic equation of the
cantilever beam free from external force can be deducted from
the generic double-curvature shell as [24]

qA€u3 þ YI
@4u3

@x4
¼ b

@2Ma
xx

@x2
(8)

where u3 is the transverse displacement, A ¼ bh is the cross sec-
tion area, I is the area moment of the cross section which is
defined as I ¼ bh3=12, Y is the Young’s modulus, q is the mass
density of the beam, and Ma

xx is, as defined previously, the flexo-
electric bending control moment. The modal expansion method is
introduced here to describe the vibration of the cantilever beam.
The dynamic transverse displacement can be written as the sum-
mation of every modal participation factor multiplied by its corre-
sponding mode shape function as

u3 ¼
X1
k¼1

gkðtÞU3kðxÞ (9)

where U3k is the transverse mode shape function, subscribe k
denotes the mode number, and gk is the corresponding modal par-
ticipation factor. U3k denotes the spatial distribution and gk

denotes the temporal contribution of each mode. For a cantilever
elastic beam, the mode shape function is defined by

U3k xð Þ ¼ Ck C kkxð Þ � A kkLð Þ
B kkLð ÞD kkxð Þ

� �
(10)
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where AðkkxÞ¼ðcoshkkxþcoskkxÞ, BðkkxÞ¼ðsinhkkx þsinkkxÞ,
CðkkxÞ¼ðcoshkkx�coskkxÞ, and DðkkxÞ¼ðsinhkkx�sinkkxÞ, kk

is the eigenvalue or the kth root of the characteristic equation
coshkkxþcoskkx¼0, and the coefficient Ck is defined as

Ck¼ð1=k2
kÞðd2U3k=dx2Þð0Þ. The first five roots of the characteristic

equation are kkL¼1:875;4:694;7:855;10:996;14:137;ðk¼1…5Þ.
Note that the magnitude Ck is a function of the excitation and thus
arbitrary as far as the mode shape is considered.

To obtain the vibration displacement of the beam u3, one
should also determine the modal participation factor gk of each
mode. When the actuation voltage applied between the line-
electrode and the lower surface electrode is harmonic, i.e.,
/aðtÞ ¼ /aejxt; the actuation force on the beam varies harmoni-
cally with time and the response is also harmonic at steady-state.
Substituting the modal expansion expression into the dynamics
equation of the beam, utilizing the orthogonality of mode shape
functions, one derives the modal equation

€gk þ 2fkxk _gk þ x2
kgk ¼ F̂

�
kejxt (11)

where xk denotes the kth mode natural frequency and it is deter-
mined by the characteristics of the cantilever beam as

xk ¼ k2
k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
YI=qA

p
, fk is the modal damping ratio which is related

to natural frequency xk and equivalent damping constant c as

fk ¼ c=ð2qhxkÞ; and F̂
�
k denotes the magnitude of the kth modal

force, which is induced only by the actuator (line-electrode) here
and it can be expressed as [24]

F̂
�
k ¼

1

qhNk

ðL

0

� @2Ma
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@x2

� �
U3kdx (12)

where Nk ¼
Ð L

0
U2

3kdx: With the magnitude of the modal force, the
modal response (modal participation factor gk) can be obtained by
solving the modal equation, i.e., Eq. (11), as
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where u� is the phase angle defined as u� ¼ arctan ð2fkðx
=xkÞ=1� ðx=xkÞ2Þ. Considering the modal expanding expres-
sion, mode shape functions and the expression of modal participa-
tion factors, one can derive the transverse vibration displacement
u3ðx; tÞ (i.e., the flexoelectric induced controllable deflection) of
the cantilever beam
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The transverse vibration of the cantilever beam is affected by the
flexoelectric bending moment induced by the actuation only.
Given an actuation voltage, the induced control moment can be
calculated, i.e., Eq. (7). Furthermore, dynamic actuation and
vibration behavior of the beam under the applied voltages can be
evaluated, i.e., Eq. (14). With the parameters listed in Table 1,
actuation effects of the line-electrode actuator are evaluated and
discussed next.

Case Studies

Spatial characteristics of the electric field induced by the line-
electrode and the resulting stress are analyzed first, followed by
evaluations of the flexoelectric induced moment and harmonic
actuation effects in case studies.

Electric Field. When an actuation voltage /a is applied
between the line-electrode and the lower surface electrode, the
spatial distribution of the potential and the electric field induced
by the line-electrode is illustrated in Fig. 3.

In Fig. 3, the lines radiate from the line-electrode are the elec-
tric field lines; the lines perpendicular to the fields (and somehow
parallel to the surface of the line-electrode) are the equal potential
lines. Note that Fig. 3 is drawn in a small region (i.e., 2h in width,

Table 1 Parameters and properties of the model

Properties Values

Beam length, L (m) 0.100
Beam width, b (m) 0.010
Beam thickness, h(m) 0.001
Young’s modulus of beam, Y(GPa) 153
Line-electrode radius, R (lm) 100
Actuation voltage, /a (V) 1
Beam mass density, q (kg/m3) 5650
Flexoelectric constant, p12 (lC/m) 100

Fig. 3 Spatial distribution of the potential field and the electric
field

Fig. 4 Spatial distribution of induced longitudinal normal
stress
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h in height) closed to the location of the line-electrode, since the
local electric gradient is relatively large as compared with the
region far away from the line-electrode. The potential of the elec-
tric field, as shown in Fig. 3, is relatively high in the region near
the line-electrode and decays rapidly with the distance away from
the line-electrode. The electric field lines, closed with each other
in the region around the line-electrode, separate from each other
as they move away from the line-electrode. This indicates that the
electric field strength near the line-electrode is larger and smaller
when away. Thus, the electric gradient is generated in the trans-
verse direction, which, in turn, as demonstrated by the converse
flexoelectric effect, induces the stresses inside the flexoelectric
cantilever beam.

Flexoelectric Induced Stresses. The relationship between the
longitudinal induced stress in the flexoelectric beam and the trans-
verse electric field is given by the stress expression Eq. (5), i.e.,
the induced stress is proportional to the gradient of the transverse
electric field. According to the distribution of the electric field

induced by the line-electrode, the spatial distribution of the mag-
nitude of induced longitudinal normal stress is plotted in Fig. 4.

Figure 4 indicates that the stress in the area underneath the line-
electrode is extremely large and it decreases to zero as it moves
away from the line-electrode. To have a better understanding of
the stress distribution, the stress distribution close to the line-
electrode is enlarged below in Fig. 4. One may observe that the
stress in the region underneath the line-electrode is positive and
the stress becomes negative in a small area next to the positive
region. Such phenomenon can be explained by analyzing the elec-
tric field plot, i.e., Fig. 3. For the region on the left of the line-
electrode, although the electric field strength is relatively strong,
its direction is almost horizontal. Thus, the transverse electric field
can be relatively small in that region; for the region right under it,
although the electric field strength is weaker, the angle between
the electric field with the horizontal line, i.e., slope, is larger.
Thus, the transverse electric field strength can be greater than the
former one. Under such circumstance, the strength of the trans-
verse electric field drops in the positive transverse direction. In
another words, the value of the gradient of the transverse electric

Fig. 5 Longitudinal distribution of the induced moment under different line-
electrode radius

Fig. 6 Longitude distribution of the induced moment under different beam
thickness
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field is negative, which leads to the stress there being negative in
the region to the left of the line-electrode [25]. The same physics
appears on the right side of the line-electrode, and thus, it forms
two negative-stress regions on both sides on the line-electrode.
The negative-stress magnitude, as shown in Fig. 4, is much less
than the positive one in both areas. Hence, the contribution of the
positive stress to the overall actuation effect is dominant as com-
pared with the negative ones. However, the appearance of the neg-
ative stresses would introduce intriguing actuation characteristics
when the induced control moments are considered.

Flexoelectric Induced Actuation Moments. Recall the dis-
placement induced by the actuation of line-electrode, i.e., Eq.
(14), the longitudinal distribution of the induced moment deter-
mines the actuation effect of the actuator (i.e., electrodes and the
beam). The induced actuation moment can be evaluated by inte-
grating the stress multiplied by the moment arm, as demonstrated
in Eq. (7). Variation of the longitudinal distribution of the induced

moment with two design parameters, i.e., the line-electrode radius
and the flexoelectric beam thickness, is evaluated here. The distri-
butions of induced moments are plotted with respect to line-
electrode radius of 50 lm, 100 lm, and 200 lm in Fig. 5.

Note that the line-electrode is placed at x�0 ¼ 0:05m and the
moment distribution is plotted in a region close to the electrode,
i.e., from x�0 � h to x�0 þ h. As shown in Fig. 5, the magnitude of
induced moment reaches a maximum at the point underneath the
line-electrode and decays rapidly away from the electrode, i.e., a
spike is formed at the line-electrode location. As the radius of the
line-electrode decreases, the spike becomes shaper and the maxi-
mal absolute value of the induced moment increases. This is rea-
sonable because as the electrode is relatively thin, the induced
electric field is rather concentrated. Thus, the induced stress near
the line-electrode increases and the stress decays faster in the lon-
gitudinal direction, which leads to the longitudinal distribution of
the induced moment being sharper as illustrated in Fig. 5. Note
that the maximum induced moment is negative in the region
underneath the line-electrode. However, positive induced

Fig. 7 Tip displacement with the line-electrode location under different
line-electrode radius

Fig. 8 Tip displacement with the line-electrode location under different
beam thickness
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moments are observed away from the line-electrode location. The
appearance of the positive induced moments whose direction dif-
ferent from the moment underneath the line-electrode can be
explained by the stress distribution inside the flexoelectric beam.
Recall that for the region near the top surface of the beam but
away from the line-electrode, as shown in Fig. 4, the induced
stress is of opposite direction compared with the stress in the
region underneath the electrode, i.e., if the stress right under the
electrode is considered pulling, the stress away from it will be
pushing [25]. Note that the stress contributes to the magnitude of

induced moments directly. Thus, it is reasonable that the longitu-
dinal distribution of the induced moment can be of different direc-
tions. This distribution of induced moment means that under the
actuation of the line-electrode the beam is bend to one direction at
the point where line-electrode is placed, while bend to another
direction in outer regions.

Line-electrode radius influences both the magnitude and the
distribution of the induced moments. Another parameter, the
thickness of the flexoelectric beam, is also evaluated here. Figure
6 illustrates the distributions of the induced moments with respect
to beam thickness of 0.5 mm, 1.0 mm, and 2.0 mm.

Figure 6 reveals that although the magnitude of the induced
moment increases with the beam thickness, their spatial distribu-
tion patterns are similar, i.e., negative to positive regions. Recall
the induced stress distribution in Fig. 4; the stress is much larger
near the top surface and it decreases when moving away from the
contact point. Accordingly, the upper part of the flexoelectric
beam is the major component contributing to the actuating bend-
ing moment and the induced moment can be approximately calcu-
lated by multiplying the induced membrane force with its moment
arm. Since the area generating major membrane force is closed to
the top surface and away from the neutral layer, both the magni-
tude and the distribution of the membrane force would not change
with the beam thickness. However, the moment arm increases as
the thickness increases and this leads to the induced moment
increasing with the thickness. Because the moment arm remains
constant along the longitudinal beam direction, the distribution of
the induced moment does not change since the membrane force
remained unchanged. The actuation effect, defined as the induced
tip displacement of the cantilever beam, is evaluated next.

Flexoelectric Actuation Effects. With the investigation of
flexoelectric actuation characteristics previously, analysis and
evaluation of the flexoelectric actuation effect (or induced control-
lable deflections) are much easier. When a harmonic actuation
voltage is applied between the line-electrode and the lower sur-
face electrode, the response of the cantilever beam is also har-
monic. Since the fundamental mode usually dominates the beam
oscillation, the excitation frequency is set to be the first natural
frequency of the cantilever beam first and the induced tip control-
lable displacement is evaluated with the harmonic response
expression, i.e., Eq. (14). The same as the earlier induced moment
study, influences of the line-electrode radius and the beam thick-
ness are evaluated, followed by natural modal effects. Particu-
larly, the flexoelectric beam is divided into nine parts with eight
lines, the line-electrode is placed on those lines one by one and
the corresponding actuation effect is obtained. The tip displace-
ments are plotted when the line-electrode is placed at eight differ-
ent points on the beam with respect to line-electrode radius of 50
lm, 100 lm, 150 lm, 200 lm, and 250 lm in Fig. 7. The elec-
trode location are chosen from x�0 ¼ 0:01 to x�0 ¼ 0:08. The rest
parameters of the system are the same as shown in Table 1.

For a given line-electrode radius, as indicated in Fig. 7, the
actuation effect or flexoelectric induced displacement reduces as
the line-electrode moving from the fixed end toward the beam tip.
Note that such decay is determined by the characteristics of the
first mode shape function. As the electrode radius enlarges, the tip
displacement decreases at each position of the line-electrode. This
can be explained by the longitudinal distribution of the induced
moment under the actuation of different radius of line-electrodes.
A thinner line-electrode enhances the electric field gradient conse-
quently resulting in a larger induced tip displacement and actua-
tion effect.

Another design parameter, the effect of the flexoelectric beam
thickness is evaluated. Again, the line-electrode is positioned at
the eight locations successively. The induced tip displacements
are evaluated when the line-electrode is placed from 0.01 m to
0.08 m with respect to beam thicknesses of 0.5 mm, 1.0 mm, and

Fig. 9 Tip displacement with the line-electrode location under
(a) mode 1, (b) mode 2, and (c) mode 3
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2.0 mm in Fig. 8. Other parameters of the system are the same as
presented in Table 1.

Similar to Fig. 7, given a beam thickness, the flexoelectric
induced tip displacement decays as the line-electrode moving
toward the free end of the beam. For each line-electrode position,
the relationship between the beam thickness and the induced tip
displacement is approximately negatively quadric. Recall that in
the analysis of induced moment under different beam thickness,
as the thickness grows the moment enhanced due to an increase of
moment arm. Because the moment arm varies with beam thick-
ness nearly linearly, the magnitude of actuation force increases
quasi-linearly with the beam thickness. Furthermore, as the beam
becomes thicker, there is a cubic growth of bending stiffness,
which means the beam becomes much harder to actuate. Thus, the
relationship between the actuation effect and the beam thickness,
as demonstrated earlier, is quasi-quadric.

For the last case here, the actuation effects induced by line-
electrodes placed at different locations of the beam from 0.01 m
to 0.08 m under the excitation frequencies of the first, second, and
third natural modes are evaluated, respectively. Recall that for the
first natural frequency, the induced tip displacement reduces as
the line-electrode approaching the free end. While such mono-
tonic decreasing is related to the first mode shape function of the
cantilever beam, the actuation characteristic of other modes may
well be different comparing with the first one. The induced tip dis-
placements at different line-electrode locations are plotted with
respect to the first, second, and third natural frequencies in Fig. 9.

As shown in Fig. 9, the optimal actuation position for the sec-
ond mode is 0.05 m and for the third mode is 0.07 m, which are
different to the first mode. One may notice that, just as the first
mode, Fig. 9(b) resembles the second mode shape and Fig. 9(c)
resembles the third mode shape of cantilever beam. To validate
the analyses and theoretical predictions, a flexoelectric physical

model is tested and its experimental data are compared with ana-
lytical results presented next.

Experiment Validation. A physical flexoelectric cantilever
beam is prepared with a line-electrode on the top surface and an
electrode layer on the bottom surface. Flexoelectric samples used
in experiments are slender BST bars supplied by Shanghai Insti-
tute of Ceramics, Chinese Academy of Science. To generate an
inhomogeneous electric field, the BST beam, as described earlier,
was fully deposited with conductive electrodes on the bottom sur-
face and a thin copper wire is applied as a line-electrode fixed on
the top surface of the beam, as shown in Fig. 10. Eight lines,
denoted by P1, P2, …, P8, were drawn on the top surface of the
beam and serve as reference locations of the line-electrode mov-
ing from one end to the other, i.e., P1 to P8, during laboratory
experiments. One end of the beam is fixed on a solid fixture,
whereas the other end is free. The tip displacement is measured at
the free end of the cantilever beam (left end of Fig. 10) when the
actuation line-electrode moves from P1 to P8, respectively. Note
that since the mass of the copper wire used here is much smaller
than that of BST beam (i.e., around 0.5% to 1% of the beam
mass), the influence of the weight of copper wire electrode on the
vibration of the flexoelectric beam is neglected.

A harmonic actuation voltage is needed to actuate or excite the
flexoelectric beam and it is generated by a function generator
(Hewlett-Packard 33120A) and amplified by a power amplifier
(Trek Model PZD700A). To evaluate the actuation effect of the
actuator, the tip displacement of the cantilever beam is measured
by a Laser Doppler Vibrometer (Sunny LV-S01, abbreviated as
LDV) and the signal is collected by a data acquisition and analysis

Fig. 10 The flexoelectric beam and its eight line-electrodes

Fig. 11 Experimental setup for evaluating flexoelectric actuation effect

Table 2 Geometrical and material parameters of the flexoelec-
tric beam

Properties Values

Beam length, L (m) 0.1
Beam width, b (m) 0.0096
Beam thickness, h(m) 0.00101
Young’s modulus of beam, Y (GPa) 150.8
Damping ratio, f 0.0099
Actuation voltage, /a (V) 200
Beam mass density, q(kg/m3) 5636
Flexoelectric constant, p12 (lC/m) 97
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instrument (ECON AVANT MI-7016). The experimental setup is
illustrated in Fig. 11.

The velocity data of the beam’s tip vibration is integrated by a
computer to obtain the displacement information. Earlier experi-
mental studies indicated that the temperature fluctuation influen-
ces BST proprieties, i.e., relative permittivity, loss tangent, etc.
[13]. In order to minimize temperature effects, the laboratory tem-
perature was kept at 28 �C when conducting experiments. In the
experiment, a BST cantilever beam with length 109.64 mm, width
9.6 mm, thickness 1.01 mm is used. Since one end was clumped
on the fixture, after subtracting the clamped part, the overhung

length of the flexoelectric beam is 100 mm, which is consistent
with the former theoretical model. Detailed geometrical parame-
ters and material properties are given in Table 2.

Tip (i.e., free-end) displacement of the beam subjected to line-
electrode harmonic excitations is measured and the data are com-
pared with theoretical analysis. All the experimental data pre-
sented below was chosen as an average of five repeated
experiments on the same beam to guarantee accuracy. Again,
since the first mode is the dominating mode, only the first mode
actuation characteristics are evaluated and compared. Figure 12
illustrates the first mode flexoelectric actuation effects of control-
lable deflections with respect to eight line-electrode positions
from P1 to P8 and three line-electrode radius of 150 lm, i.e., Fig.
12(a), 200 lm, i.e., Fig. 12(b), and 250 lm, i.e., Fig. 12(c).

In general, the experimental data follows well with respect to
theoretical predictions in Fig. 12, but fluctuates at some points,
like P3, P5 in Fig. 12(b). The difference of P5 between the theo-
retical prediction and experiment data is about 60%, the rest data
are well within 620% of the theoretical predictions. The errors
could be induced by material inhomogeneity of the beam sample,
LDV measurement deviations or unstable floors since the induced
displacement is in micrometer. Besides, the metal fixture, as a
good conductor, would influence the electric field distribution
generated by the line-electrode and lower surface electrode, which
can also impact the measurement accuracies. A second thicker,
i.e., length 109.68 mm, width 10.06 mm and thickness 2.03 mm
was used to repeat experiment by following identical experimental
procedures, and smaller tip displacements were observed. It is
because of increasing beam thickness, the induced electric field
gradient decreases.

Conclusions

Dynamic actuation characteristics and vibration control of a
flexoelectric cantilever beam with the converse flexoelectricity
were evaluated theoretically and experimentally in this study. A
line-electrode was used to generate the electric field gradient so
that internal stresses and then actuation moments were induced.
Flexoelectric induced modal tip displacements or controllable
deflections of the cantilever beam were evaluated at resonance.
Theoretical and experimental results with respect to design param-
eters were investigated and compared. Since the fundamental
mode usually dominates the beam oscillation, the first natural fre-
quency was used as the excitation frequency of the input signal.
Analytical results showed that thinner-radius line-electrode and
thinner flexoelectric beam leads to larger control effects. Besides,
the line-electrode location also had great influence on the control
effects, which was proved analytically and experimentally. Mov-
ing the line-electrode from the fixed end of the free end, the
induced tip displacement decreased. The analytical results gener-
ally agreed well with the experimental data collected from labora-
tory experiments. Thus, this study would provide fundamental
insights of flexoelectric actuation and possible design guidelines
in engineering applications.
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