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platform for flexible devices[25–32] and mor-
phing structures.[33–36] Their interesting 
behaviors have been activated using a 
variety of strategies, including mechanical 
forces,[28,37,38] magnetic fields,[39] light,[40] 
heat,[41,42] prestressed substrates[43,44] and 
external pneumatic actuators.[30,31] Differ-
ently, here we introduce a kirigami com-
posite that can be used to create airtight 
inflatables (i.e., kirigami balloons). Our 
system comprises a kirigami plastic sheet 
(Figure 1a) embedded into a thin layer of 
elastomer (Figure 1b) and can be actuated 
pneumatically by injection of compressed 
air into the composite balloon. We show 
that the deformation of such balloons 
can be guided toward a target shape upon 
inflation by optimizing the geometry of 
the kirigami cuts. Remarkably, since we 
have control of the geometric features 

for each unit cell, the deformation of the inflatable can be pro-
grammed at the “pixel” level. This enables the realization of 
inflatables that mimic the target shape at different scales when 
guided by robust algorithms to optimize their design. While a 
few strategies have been proposed to control the deformation 
of kirigami,[25,38] these are lacking an inverse design approach. 
On the other hand, optimization strategies have been suc-
cessfully developed for the design of shape-morphing origami 
structures.[45–47] Unfortunately, these cannot be employed when 
designing kirigami structures as their degrees of freedom are 
different. Regarding kirigami, although a few approaches have 
been recently proposed for their optimization,[34,48,49] these all 
focused purely on geometry and did not consider elasticity in 
the systems. Differently, in our approach we fully account for 
the elasticity of the material and demonstrate how this results 
in an enlarged design space.

Kirigami, the Japanese art of paper cutting, has recently enabled the design 
of stretchable mechanical metamaterials that can be easily realized by 
embedding arrays of periodic cuts into an elastic sheet. Here, kirigami 
principles are exploited to design inflatables that can mimic target shapes 
upon pressurization. The system comprises a kirigami sheet embedded 
into an unstructured elastomeric membrane. First, it is shown that the 
inflated shape can be controlled by tuning the geometric parameters of the 
kirigami pattern. Then, by applying a simple optimization algorithm, the best 
parameters that enable the kirigami inflatables to transform into a family 
of target shapes at a given pressure are identified. Furthermore, thanks to 
the tessellated nature of the kirigami, it is shown that we can selectively 
manipulate the parameters of the single units to allow the reproduction of 
features at different scales and ultimately enable a more accurate mimicking 
of the target.

Very popular among children in the form of party balloons, 
inflatables have also been employed in science and engi-
neering to enable the design of a variety of systems, including 
temporary shelters,[1–3] airbags,[4,5] soft robots,[6–11] and shape-
morphing structures.[12–15] To design shape-changing inflat-
able structures, two main strategies have been pursued. 
On the one hand, load-bearing inflatable structures have 
been realized using inextensible membranes.[1–3,16] On the 
other hand, complex shape changes have been achieved by 
exploiting the flexibility of stretchable membranes with either 
optimized initial deflated geometry[15,17–19] or embedded rein-
forced components.[8,9,20–24]

Here, we use kirigami as a powerful tool to realize shape-
shifting structures that can mimic target shapes upon inflation. 
Kirigami metamaterials, realized by embedding arrays of cuts 
in elastic sheets, have recently shown great promise as design 
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To fabricate our kirigami balloons, we first embed a com-
putationally designed array of cuts into a polyester plastic sheet 
(Artus Corporation, NJ, with thickness t  ≈ 76.2  µm, Young’s 
modulus E  = 4.33  GPa and Poisson’s ratio ν  = 0.4). Although 
our approach can be applied to any kirigami geometry, we 
consider a pattern of mutually orthogonal slits of width b 
(Figure 1d) since this particular pattern provides a wide range 
of tunability for the unit cell’s Poisson’s ratio (Figure S17, Sup-
porting Information). The selected unit cell has width L and 
height H and comprises four rectangular domains connected 
by hinges of width δ1 and δ2 (in the horizontal and vertical 
direction, respectively). Throughout the study we consider  
L  = 12 mm and δ2/L  = 0.03 as fixed parameters and tune the 
mechanical response of the unit cells by varying H/L ∈ [0.5 − 2.0] 
and δ1/L  ∈ [0.02 − 0.18]. To turn the kirigami sheet into an 
inflatable, we first roll it into a cylindrical shell and glue acrylic 
caps to both ends. Then we slowly rotate the kirigami shell in 
a bath of uncured silicone rubber (Ecoflex 00-50, Smooth-On, 
with initial shear modulus μ = 40.5 kPa) for 20 min. This forms 
a uniform coating with thickness t ≈ 0.5 mm that embeds the 
kirigami sheet completely (Figure 1c; Section S1 and Movie S1, 
Supporting Information). Once the elastomer is fully cured, we 
inflate the system by providing pressurized air and record the 
deformation with a digital camera (SONY EX100V).

To demonstrate the potentials of kirigami inflatables in 
Figures  1e,g we report experimental snapshots for three kiri-
gami balloons comprising nz = 20 and nφ = 8 unit cells in the 
axial and circumferential direction, respectively. In the first 
design, all unit cells are identical and characterized by δ1/L  = 
0.03 and H/L  = 0.5. As one would expect, upon inflation, this 
structure deforms homogeneously along its soft axis and mostly 
elongates (Figure 1e). However, by increasing δ1/L to 0.18 for a 

single column of unit cells, we transform the deformation mode 
from extension to bending and obtain a curved profile upon 
inflation (Figure 1f). Further, thanks to the tessellated nature of 
the kirigami, we can choose to distribute the unit cells with δ1/L 
= 0.18 on different columns within the structure and achieve 
a complex coupled bending-twisting deformation (Figure  1g; 
Movie S2, Supporting Information).The variation of the struc-
tures’ deformation over multiple loading cycles has also been 
tested and found negligible (Figure  S6, Supporting Informa-
tion). As such, these results highlight not only the flexibility and 
potential of our approach, but also the richness of the design 
space. In the remainder of this paper, we combine finite element 
(FE) analyses and optimization to efficiently explore the myriad 
of possible designs and identify spatially varying distributions of 
geometric parameters resulting in target shape changes upon 
inflation.

We start by focusing on the design of kirigami balloons that 
mimic target axisymmetric profiles upon inflation, such as the 
jar shown in Figure 2b. First, we use FE simulations to charac-
terize how local changes in hinge width δ1 and unit cell height H 
affect the macroscopic deformation of the system. Since the defor-
mation of our axisymmetric inflatables (for which all unit cells 
in each row are identical) can be obtained by superimposing the 
responses of the individual rows (Figure S11, Supporting Informa-
tion), we simulate a single unit cell with suitable boundary condi-
tions applied on its edges (Section S3.1, Supporting Information). 
In Figure  2a, we report the numerical evolution of the homo-
genized axial (εz) and circumferential (εφ) strains as a function of 
H/L and δ1/L for unit cells with initial curvature κ = 2π/(nφL) =  
π/(4L) subjected to a pressure P  = 20 kPa. The contour plots 
indicate that εz is inversely proportional to both δ1/L and H/L, 
whereas εφ is mainly affected by H/L and increases monotonically 

Figure 1. Kirigami inflatables. a) A kirigami sheet exhibits large deformation when stretched. b) Deformation of an elastomeric balloon upon inflation. 
c) Fabrication process. A kirigami shell is rotated in an uncured elastomer bath. Then, the uniformly coated kirigami shell is kept rotating until the 
elastomer is fully cured. d) Schematic of the kirigami pattern used in this study. e–g) Deformation of kirigami balloons with 20 × 8 unit cells when 
subjected to P = 20 kPa. Three design are considered with: e) all identical unit cells (with δ1/L = 0.03 and H = L/2); f) a single column of unit cells with 
δ1/L = 0.18; g) unit cells with δ1/L = 0.18 distributed on different columns. Scale bars = 30 mm.
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as H/L becomes larger. It is worth noticing that although  
these results were obtained with a fixed number of unit cells along 
the circumference, we can show that they also describe the defor-
mation of unit cells with arbitrary curvature κ subjected to a nor-
malized pressure P P κ= /  which equals to P  = 305.6 kPa mm for 
our selected parameters. In fact, unit cells with same δ1 and H but 
different curvature κ experience the same state of deformation if 
subjected to the same normalized pressure P  (Section S3.3, Sup-
porting Information).

Once we understand how the geometrical features affect 
the deformation of the unit cells upon inflation, we can search 
for arrangements that minimize the mismatch between the 
shape of the kirigami balloon inflated at a normalized pressure 
P = 305.6 kPa mm and a target surface of revolution defined by 
a profile A (Figure 2b). To identify the optimal height of the ith 
row of unit cells, Hi, and the corresponding ligament width, iδ1, 
we minimize
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Note that iεφ and z
iε  are the homogenized circumferential and 

axial strain the unit cells undergo in the ith row upon inflation, 
which, for each evaluation of the objective function, are obtained 
by linearly interpolating the FE results of Figure 2a. Finally, we 
solve the optimization problem described by Equations (1)–(3) 
using a Matlab implementation of the Nelder–Mead simplex 
algorithm with bounds applied to all variables (i.e., we impose 
Hi/L ∈ [0.5 − 2.0] and Liδ ∈ −/ [0.02 0.18]1 ).[51]

In Figure 2c, we show an inflatable kirigami designed with 
nz = 10 and nφ = 25 that mimics the jar of Figure 2b when sub-
jected to a pressure P = 6.4 kPa (resulting in P = 305.6 kPa mm). 
Note that the parameters nz and nφ define the resolution of the 
programmed deformed shape. We explore different combina-
tions of nz and nφ (Figure S12, Supporting Information), and 
choose the one that provide a small mismatch from the target 

Figure 2. Targeting axisymmetric profiles. a) Evolution of the axial strain, εz, and the circumferential strain, εφ, as a function of δ1/L and H/L for unit 
cells with initial curvature κ = 2π/(nφL) = π/(4L) subjected to a pressure P = 20 kPa. b) A jar is selected as target profile. c) Schematic of axisymmetric 
profile optimization model. d) Optimal design for an inflatable with nz = 10 and nφ = 25 that mimics the jar when subjected to a pressure P = 6.4 kPa 
(Table S1, Supporting Information). e–f) Snapshots of the optimized design after pressurization. The orange line indicates the target profile. Both  
FE (e) and experimental (f) results are shown. Scale bars = 30mm.
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shape without complicating the fabrication process. As shown 
in Figures  2d, the solution identified by the algorithm for 
nz  = 10 and nφ  = 25 comprises unit cells with large height H 
between the third and sixth rows (to maximize the radial expan-
sion) and with large δ1 in the seventh, eighth and ninth row (to 
minimize both axial and circumferential strains). We find that, 
using the optimized set of parameters, both the FE simulations 
and the physical samples closely mimic the target shape upon 
inflation (Figure 2e,f; Movie S3, Supporting Information), con-
firming the validity of our approach.

Next, we demonstrate how to design kirigami balloons that 
mimic a planar curvilinear path P  upon inflation. A bending 
deformation requires unit cells with different geometric features 
to be arranged in the same row of the kirigami pattern. There-
fore, guided by the results of Figures  1f and 2a, we design the 
ith row of the kirigami to include one unit cell with H/L = 0.5 
and δ1/L = 0.18 (shown in purple in Figure 3a) and (nφ − 1) unit 
cells with the same height (i.e., with H/L = 0.5) and variable Liδ /1  
(shown in green in Figure  3a). However, since the coexistence 
of different unit cells on the same row of the kirigami causes 
non-negligible coupling between these units in the circumferen-
tial direction, we cannot directly use the results of Figure 2a to 
predict the effect of iδ1 on the bending deformation (Figure S13, 
Supporting Information). Instead, we simulate a full ring with 
nφ = 8 when subjected to P = 20 kPa (Section S3.2, Supporting 
Information) and extract the axial strain εz and the bending 
angle Δθ (Figure  3a). In Figure  3b, we show the evolution for 
both εz and the Δθ as a function of δ1/L. The results indicate 
that, as the hinge width δ1 increases, both εz and Δθ monotoni-
cally decrease (i.e., the bending deformation become smaller).

To identify the design of a kirigami balloon that mimics a 
prescribed planar curvilinear path P  upon inflation (Figure 2c), 
we assume that the final shape of the inflated kirigami struc-
ture can be captured by linearly combining the response of nz 
rings. We then determine both the optimal iδ1 for the ith row 
and the location of the stiffer unit cell (with δ1/L = 0.18) in the 
ring by using the Melder–Nelson algorithm with bounds.[51] 
Specifically, we minimize

h L x zi

i

n

i

n
i i

i

z z

Z PP∑ ∑= − +  
δ =

{| | }arg min d ( , ),
11  

(4)

where h Hi i
z
iε= +(1 ) and LP  is the total length of the curve P . 
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Note that the angle φi points at the location of the stiffer cell 
within the ith ring (Figure 3a). It is worth noticing that in the 
case of 2D curvilinear paths (as those considered here), this 
angle can only assume two values: φi = 0 or φi = π. In fact, our 
model outputs φi  = 0 if, for the ith ring, the bending angle 
Δθ defines a positive curvature (e.g., the third segment in 

Figure 3. Targeting curvilinear paths. a) Schematic of a kirigami ring comprising one unit cell with H/L = 0.5 and δ1/L = 0.18 (shown in purple) and 
nφ – 1 = 7 unit cells with H/L = 0.5 and δ1/L < 0.18 (shown in green). The deformation of the ring can be characterized by the axial strain εz and the 
bending angle Δθ. b) Evolution of axial strain εz and bending angle Δθ as a function of the normalized hinge width δ1/L for a ring with initial curvature 
κ = π/(4L) subjected to a pressure P = 20 kPa. c) A hook is chosen as target shape. d) Schematic of curvilinear path optimization model. e) Optimized 
design for an inflatable with nz = 50 and nφ = 8 that mimics the hook when subjected to a pressure P = 20 kPa (Table S2, Supporting Information).  
f,g) FE and experimental snapshots of the optimized inflatable kirigami structure when subjected to a pressure P = 20 kPa. Scale bar = 30 mm.
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Figure  3d) and φi  = π if defines a negative curvature (like the 
first and second segments in Figure 3d).

In Figure 3e, we consider an inflatable design with nz = 50  
and nφ  = 8 that mimics the shape of the hook shown in 
Figure  3c when subjected to a pressure P  = 20 kPa (resulting 
in P = 305.6 kPa mm). As shown in Figures  3f and 3g, using 
the optimized design, both the FE simulation and the experi-
mental model morph from a cylinder to the target hook path 
upon inflation (Movie S4, Supporting Information).

While in Figures  2 and 3, we focused on inflatable that 
purely expand or bend, the combination of these two classes of 
deformations enables the mimicking of a multitude of shapes. 
As an example, let us consider the squash shown in Figure 4a 
as target shape. First, we focus on top portion of the fruit, 
which predominantly bends, and use Equation (4) to identify 
the optimal geometric parameters for the corresponding part of 
the kirigami balloon (Figure 4b, top). Second, we consider the 
bottom part of the squash, which follows an axisymmetric pro-
file, and use Equation (1) to design the corresponding kirigami 
pattern (Figure  4b, bottom). However, the resulting optimized 
design does not closely match the target shape (Figure  4c). 
Specifically, while the top part of the fruit is successfully 
reproduced by the optimized inflatable, this fails to mimic  
the localized bulges near the tip. Moreover, the expansion of the 
optimized balloon in the lower part is physically limited in the 
radial direction, resulting in an unsatisfactory transformation.

Nevertheless, we can overcome both limitations by manipu-
lating the geometrical features of the unit cells even more. For 
example, by removing entire unit cells from the top part of the 
kirigami pattern (see region highlighted in blue in Figure 4d), 
we are able to obtain localized regions that bulge upon infla-
tion, mimicking the real features of the fruit (Figure  4d, top). 

Following the same strategy, we can also improve the circum-
ferential stretchability of the bottom part of the structure by 
selectively removing strips from the kirigami sheet. To deter-
mine the width of these sacrificial portions, we first quan-
tify the circumferential strain that a strip of elastomeric 
material undergoes at a pressure of P  = 10 kPa (resulting in  
P = 305.6 kPa mm, since in our design nφ = 16). We assume that 
such strip behaves as an inflated thin elastomeric cylindrical 
balloon with axial expansion constrained by the kirigami and 
obtain its circumferential strain, εφ

e, by solving[52,53] (Section S4,  
Supporting Information)

P
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where λ ε= +φ φ 1e e  and εz is the axial strain of the kirigami (which 
is provided in Figure  2a). Moreover, t and r denote the thick-
ness and radius of the strip in the undeformed configuration 
(for our design r = nφL/(2π) = 30.56 mm and t = 0.5 mm) and 
Ŵ e is the strain energy function used to captured the response 
of the rubber (in this study we use a Gent model[54]). Once εφ

e 
is obtained, the circumferential strain εφ

tot of a kirigami unit cell 
with a removed elastomeric strip of width we can be estimated 
as

L w w
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ε ε ε= − +
φ
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where εφ is the circumferential strain of the kirigami unit cell, 
also provided in Figure 2a.

To find the optimum we for our balloon, we focus on 
the kirigami row that is closest to the squash’s maximum 

Figure 4. Targeting complex shapes. a) A squash is chosen as target shape. The flowchart instructs on the steps to follow in order to optimize for both 
non-axisymmetric and axisymmetric parts. b) Optimized design for an inflatable with nz = 39 and nφ = 16 that mimics the squash when subjected to a 
pressure P = 10 kPa (Tables S3 and S4, Supporting Information). The geometric parameters for the top 23 rows are identified using Equation (1), while 
those for the bottom 16 rows are obtained using Equation (4). c) Numerical snapshot of the optimized design after pressurization. The shape of the 
fruit is not fully captured. d,e) To improve the design we further manipulate the unit cell and remove portions of the kirigami pattern. The bulges can 
be obtained by removing entire unit cells at the desired location and the circumferential strain in the bottom part can be increased by removing strips. 
Both FE (d) and experimental (e) snapshots of the kirigami inflatable show improved mimicking of the target. Scale bar = 30 mm.
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circumference (7th row with H  = 24 mm and δ1/L  = 0.03). 
For this specific unit εz  = 0.054 and εφ  = 0.428, which results 
in ε =φ 3.59e  according to Equation (7). Further, since we must 
reach ε =φ 1.094tot  in the 7th row upon inflation, we obtain  
we = 2.53 mm from Equation (8). Guided by these calculations, 
we use FE simulations to predict how the response of a kiri-
gami unit cell is affected by the removal of a kirigami strip of 
width we = 2.53 mm. We find that the deformation of the inflat-
able in the axial direction is strictly coupled with the location of 
the removal within the unit cell (Figure S15a, Supporting Infor-
mation). Since our objective is to achieve the target εφ

tot without 
compromising εz, we next consider two neighboring unit cells 
and remove a strip of width 2we from one, while leaving the 
other intact. The results for this case improve considerably 
(Figure S15b, Supporting Information). However, if the width 
of the elastomeric strip is kept constant in all rows, the inflated 
balloon fails to match the squash profile as the radial expansion 
is almost constant along the length (Figure S16c, Supporting 
Information). To further improve the response of our balloon, 
we choose we to vary in each row. Specifically, we assume that 
w Li iδ= −2 /2 2e 1 (note that w = 2.64e

7  mm, which is very close to 
the analytically calculated value), since this enables us to incor-
porate the information from our optimization algorithm and 
fabricate the inflatable by simply removing the hinges high-
lighted in blue in Figure  4d. Results for this final design are 
shown in Figures  4d and 4e and show that our design nicely 
mimic the target shape upon inflation—including the local-
ized bulges on the top part of the bending balloon—in both 
the FE model and the physical prototype (Movie S5, Supporting 
Information). Further, to demonstrate that our approach is gen-
eral and can be used to mimic a range of shapes, we report an 
optimized design for a cylindrical structure that morphs into a 
calabash in Figure S19, Supporting Information.

To summarize, in the present work we introduced the con-
cept of kirigami inflatables, shape-morphing systems that 
combine a kirigami shell and an elastomeric membrane. We 
showed that the kirigami shell drives the global deformation of 
the inflatable and that we can control this deformation by care-
fully designing its geometric features. We demonstrated this by 
creating inflatable kirigami balloons that can mimic a variety of 
axisymmetric shapes and curvilinear trajectories and also cap-
ture local features such as bulges. This multiscale mimicking 
is enabled by the tessellation nature of the kirigami metamate-
rial, which allows to easily tweak the local parameters—or even 
remove parts of the design—to boost the deformation locally. 
Although our approach enable us to reproduce a variety of tar-
gets, there are limitation to the shapes one can mimic. First, 
the maximum radial expansion of the kirigami balloons upon 
inflation is limited to 1.43 times the initial radius, using the 
data set shown in Figure  2a. This limitation can be enlarged 
by using the removal approach through the semi-analytical 
model. Additionally, the maximum axial extension upon infla-
tion is 1.46 times of the initial length. It is worth noticing that 
a bending kirigami balloon present a upper limit on the max-
imum achievable curvature (e.g., 14.4 1/m for rings with 8 unit 
cells with L = 12 mm). However, increasing the number of unit 
cells per unit length of the target provides more feasibility to 
mimic curvilinear path with larger curvature. Furthermore, 
the kirigami structure can not mimic convex surfaces in the 

circumferential direction (e.g., the ridges on the squash). In 
principle, inflatable structures are not able to form ridges upon 
inflation without additional constraints (e.g., internal strings or 
braces). Last, it should be noticed that we only used cylinders 
as starting deflated shape for our structures. This limits our 
approach to the mimicking of shapes within the same “family,” 
compatibly with the mechanical limitations of the structures. 
However, the approach is expandable to other initial shapes, 
conditionally to the rerunning of the database of solution for 
the new unit cells and super cells. As such, our work pro-
vides a new platform for shape-morphing devices that could 
support the design of innovative medical tools, actuators and 
reconfigurable structures.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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