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ABSTRACT

The conflict between strength and toughness is a fundamental problem in engineering materials design.
However, systematic discovery of microstructured composites with optimal strength-toughness trade-offs
has never been demonstrated due to the discrepancies between simulation and reality and the lack
of data-efficient exploration of the entire Pareto front. Here, we report a widely applicable pipeline
harnessing physical experiments, numerical simulations and artificial neural networks to efficiently
discover microstructured designs that are simultaneously tough and strong. Using a physics-based
simulator with moderate complexity, our strategy runs a data-driven proposal-validation workflow in
a nested-loop fashion to bridge the gap between simulation and reality in high sample efficiency.
Without any prescribed expert knowledge of materials design, our approach automatically identifies
existing toughness enhancement mechanisms that were traditionally discovered through trial-and-
error or biomimicry. We provide a blueprint for the computational discovery of optimal designs, which
inverts traditional scientific approaches, and is applicable to a wide range of research problems beyond
composites, including polymer chemistry, fluid dynamics, meteorology, and robotics.

Strength—the ability to recover from an applied load, and toughness—the ability to resist cracks,
are two quintessential properties in most engineering materials, since these materials must resist non-
recoverable deformation and prevent catastrophic failure under external loading in structural applications.
Unfortunately, strength and toughness are often mutually exclusive because, in order to be tough, a material
must be ductile enough to tolerate long cracks and absorb more energy before fracturing!. Although a few
exceptions have been discovered among microstructured composites through trial-and-error approaches or
biomimicry?~/, there is no systematic way to design and fabricate such materials. Recent development
in additive manufacturing allows materials to be arranged combinatorially in space, enabling designs
that were impossible to physically realize before, including high-performance structural materials®~1°
and functional objects”!!. Furthermore, computational methods (e.g., structural optimization) allow for
efficient exploration of optimal designs inside a parameterized design space with the help of numerical
simulation'?>~!7. However, all reliable computational explorations require simulation models to accurately
match the corresponding experimental measurements over the entire design space. This is still very



difficult for toughness prediction as current simulations—despite harnessing advanced fracture theories—
are unable to fully model the fracture of structured materials'®>°. Moreover, the computational process
for discovering microstructured composites that are both tough and strong is also challenging, since their
conflicting nature dictates that there is not a single best solution but a set of Pareto-optimal solutions.
To obtain the entire Pareto front where one can make simple trade-off decisions among optimal designs,
existing structural optimization algorithms typically execute many single-objective optimization routines
or rely on evolutionary strategies”!. Both of these strategies incur a large number of simulations. Therefore,
finding Pareto-optimal designs using these approaches imposes contradictory demands on the simulator:
the simulator should model all physical details to be accurate, but it must also run extremely fast to reduce
computational cost. Such simulators have to undergo careful design by field experts, which is normally
unrealistic especially for microstructured composites with complicated geometries and abundant material
interfaces.
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Figure 1. Schematic of our approach to discovering microstructured composites with experimentally
verified optimal strength-toughness trade-offs. a, Workflow of the proposed nested-loop pipeline. Our system
integrates three distinctive evaluators: a mechanical tester, an FEM-based simulator, and a CNN-based predictor,
that vary in evaluation speed and accuracy. Data flow directions are indicated by colored arrows. Arrows from
slower, more accurate evaluators to faster, less accurate evaluators illustrate the propagation of microstructure
performance data for improving the latter’s accuracy. Arrows pointing in the opposite direction represent proposed
Pareto-optimal designs from faster evaluators to slower ones for validation. The self-loop at the predictor depicts an
evolutionary strategy for finding its Pareto front. b, Illustration of a microstructure and the corresponding
microstructured composites. The microstructure is defined by a 2D pattern that demonstrates the spatial arrangement
of two base materials with contrasting properties. ¢, Sample photographs of manufactured microstructured
composites, annotated by the source microstructure patterns.

Here, we present an efficient and expert-knowledge-free approach for the automatic discovery of mi-
crostructured composite designs with optimal strength-toughness trade-offs (where strength is represented
by Young’s modulus®>~>%), tackling all of the aforementioned challenges simultaneously. Our approach
employs three evaluators (Fig. 1a): (1) a mechanical tester that conducts physical measurements, (2) a finite
element method (FEM) -based simulator that performs virtual mechanical testing in moderate complexity,
and (3) a convolutional neural network (CNN) -based predictor that executes machine learning inference.
All evaluators take an arbitrary microstructure design as input and then measure or predict its Young’s
modulus and toughness as output, with varying evaluation speed and accuracy. The mechanical tester runs
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very slowly due to labor-intensive specimen fabrication and testing (~ 10* s/sample), but this provides
ground truth performance values for a microstructure design. At the opposite end of the spectrum we
have the predictor, which runs extremely fast (~ 10~ s/sample) but yields relatively inaccurate results. In
between, we have the simulator, which runs reasonably fast (~ 1 s/sample) given its moderate complexity
and delivers intermediate accuracy. The full pipeline executes in a nested-loop fashion. Faster evaluators,
acting as surrogate models, conduct multi-objective structural optimization and propose microstructure
designs on the Pareto front to slower evaluators (from right to left, top Fig. 1a). Slower evaluators, being
more accurate, validate the performance of these designs and use them as additional training data to
improve the accuracy of the faster evaluators (from left to right, bottom Fig. 1a). As faster evaluators
become increasingly accurate throughout the process, they are able to propose higher quality designs
to the slower evaluators. Overall, our nested-loop pipeline effectively improves sample efficiency in
discovering microstructure designs with optimal strength-toughness trade-offs. The inner loop between the
simulator and the predictor reduces the number of numerical simulations for finding the simulator’s Pareto
front by an order of magnitude compared with other state-of-the-art structural optimization algorithms.
The outer loop between the mechanical tester and the simulator simultaneously closes the sim-to-real
gap and discovers experimentally verified Pareto-optimal microstructure designs based on only a few
dozen physical measurements. Remarkably, this is accomplished with a physics-based simulator that
does not incorporate sophisticated or advanced modeling of material inelasticity or fracture. Despite the
limited modeling capability, the simulator autonomously learns to match the behavior of Pareto-optimal
microstructures with physical experiments.

The microstructured composites in this study consist of two acrylic-based photopolymers, one rigid and
one soft, that contrast in stiffness and ductility (Supplementary Table 2). The unit cell of a microstructure,
which we call a microstructure pattern (Fig. 1b and Supplementary Fig. 1), is constructed by digitally
arranging the base materials in a 20x 20 regular grid through 3D printing (Fig. 1¢). The Young’s modulus
and toughness of a microstructure is measured on fabricated specimens via tensile mechanical testing>*.
To obtain reliable physical measurements that are comparable in horizontal and vertical directions, we
limit the volume fraction of the rigid material in a microstructure pattern between 50% and 85%, and
further enforce symmetry along axes and diagonals (see Supplementary Information for full constraint
specifications). Even under these constraints, the design space of microstructures is sufficiently large to
render exhaustive search methods infeasible.

At the foundation of our approach, the FEM-based simulator is constructed with simplified specimen
geometry and material modeling. The FEM grid comprises three types of elements: soft, rigid and interface
elements (see left-hand side of Fig. 2a). To simulate mechanical testing of a microstructured composite,
each element type is characterized by three essential material parameters: Young’s modulus, Poisson’s
ratio and maximal strain energy density (the energy density beyond which an element fails and becomes
void). Above them, a global damping coefficient is added to capture energy dissipation and suppress
numerical oscillations, which results in a total of 10 exposed parameters. Since we do not assume any
prerequisite knowledge of microstructured composites, the exposed parameters are initially optimized
to match experimental measurements of base materials, namely, homogeneous composites fabricated
with soft, rigid, and interface materials, respectively?. The relatively simple nature of our simulator
precludes tedious implementation and allows for substantial evaluation throughput. With a customized
high-performance explicit solver for dynamic finite-element analysis>#, it takes around 0.015 s for every
Young’s modulus evaluation and 0.2 s for toughness at maximum throughput (Supplementary Fig. 7).

The inner loop of our nested-loop pipeline explores the maximal simulated performance range of
microstructured composites (i.e., the simulated performance gamut) and finds designs on the simulation
Pareto front. Since the complex, discontinuous nature of fracture makes it almost impossible to reach
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Figure 2. Discovery of microstructures with optimal performance trade-offs in simulation using neural
network-accelerated multi-objective optimization (NMQO). a, Workflow of NMO illustrated by a zoomed-in
snapshot of the inner loop between the simulator and the predictor in Fig. 1a. The simulator has 10 exposed
parameters, including material model parameters of rigid, soft, and interface base materials plus a global damping
coefficient. Leveraging the predictor as a surrogate model, the simulator provides training data to improve the
predictor’s accuracy. The predictor then discovers its Pareto front using an evolutionary algorithm and proposes
several Pareto-optimal microstructure designs back to the simulator for validation. b, Average prediction errors of
Young’s modulus and toughness in NMO over 500 iterations, calculated for all discovered microstructures and
specifically those on the simulation Pareto front. Shaded regions indicate standard deviations estimated from
adjacent data points. ¢, Evolution of design proposal quality, as characterized by the Pareto hypervolume of 10
proposed designs in each iteration, over 500 iterations. NMO is compared with NSGA-II and a random sampling
strategy. d, Comparison of final Pareto hypervolumes from our 500-iteration NMO strategy and a simpler alternative
(NMO one iteration) that trains the predictor with 5,000 random designs and proposes designs on the Pareto front
once. e, Comparison between NMO and other multi-objective optimization algorithms in Pareto hypervolume
growth within a budget of 5,000 simulation evaluations. The baselines comprise our modified NSGA-II>* algorithm,
two topology optimization (TO) algorithms, BESO%%7 and SIMP?® using method of moving asymptotes (MMA)>,
and two multi-objective Bayesian optimization (MOBO) algorithms, DGEMO?° and TSEMO?!. The
implementation of these baseline algorithms is described in Supplementary Information®*. MOBO algorithms are
stopped at 2,000 simulations due to exceeding a time limit of 24 hours. Each solid curve is an average of repeats
using five random seeds and the colored region around a curve indicates standard deviations. f, Number of
evaluations required for NMO and other baseline algorithms to reach the same target hypervolume of 1.72x 10"
NZm~*. The target hypervolume is marked by a dashed black line in e.
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theoretically Pareto-optimal microstructures without exhaustive search, the goal of the inner loop is to
discover the largest Pareto front possible using a limited number of simulations. Unlike traditional methods
that conduct structural optimization using the simulator exclusively, the inner loop of our approach employs
the CNN-based predictor as a surrogate model to guide the optimization process>*, hence named neural
network-accelerated multi-objective optimization (NMO) (Fig. 2a). Starting from a dataset of 10 random
microstructures”*, NMO repeats the following steps for 500 iterations in total (Fig. 2a). First, the two
neural networks of the predictor, one for Young’s modulus and one for toughness, are trained using
simulated properties of all microstructures in the current dataset. Then, the Pareto front of the trained
predictor is computed using an evolutionary multi-objective optimization algorithm (right part of Fig. 2a;
in our case, we use a modified NSGA-II algorithm?#3?). Each of these Pareto front computations incurs a
negligible time cost, since the predictor runs orders of magnitude faster than the simulator. Finally, the
predictor proposes 10 Pareto-optimal designs to the simulator for validation. The validated designs are
used to augment the microstructure dataset, to serve as additional training data in the next iteration.

In early iterations, the predictor is very inaccurate due to limited training data. Predictions for
Pareto-optimal designs are particularly inaccurate, since they are far away from the microstructures in the
initial dataset. Nonetheless, as the algorithm proceeds the predictor becomes more accurate by virtue of
accumulating training data from the simulator. This is evidenced by the decreasing prediction errors in
both Young’s modulus and toughness over iterations (Fig. 2b). Interestingly, the prediction errors of Pareto-
optimal microstructures decline even faster (blue lines in Fig. 2b), indicating that the predictor considerably
improves its inference near the simulation Pareto front after retraining. Meanwhile, the self-learning
predictor is able to propose increasingly better microstructure designs to the simulator, which we quantify
using the Pareto hypervolume (namely, the area enclosed by the Pareto front) of 10 validated designs in
each NMO iteration (Fig. 2c). Compared with a direct application of NSGA-II and random sampling,
our approach shows consistently higher design proposal quality over the entire algorithm. Eventually,
the repetitive proposal-validation workflow allows NMO to reach a Pareto hypervolume of 1.84x 10
N’m~* after 500 iterations (5,000 simulation evaluations excluding random initial designs). This is
notably better than simply training the predictor via 5,000 random samples and validating Pareto optimal
designs once (NMO one iteration in Fig. 2d), which only achieves 66.1% of our achieved hypervolume.
Most importantly, NMO outperforms state-of-the-art optimization algorithms in terms of exploration
efficiency within the design space, including NSGA-II*?, topology optimization>’* (TO), and other
surrogate-model-based algorithms such as multi-objective Bayesian optimization (MOBO)3%3!. As shown
in Fig. 2e, NMO covers the largest Pareto hypervolume within a budget of 5,000 simulations, surpassing
TO and MOBO algorithms by a notable margin. This demonstrates promising opportunities for NMO to
tackle structural design problems involving complex, non-linear mechanical properties, where TO exhibits
severe limitations. To further distinguish NMO in sample efficiency, we run both NMO and NSGA-II until
reaching a target hypervolume of 1.72x10'> N*>m~*, and then observe the number of simulations required
(Fig. 2f). Here, NMO takes an order of magnitude fewer simulation evaluations to achieve the target
hypervolume, demonstrating evidently superior sample efficiency. Aside from the modified NSGA-II in
this study, NMO is also compatible with other optimization algorithms for finding the predictor’s Pareto
front. In practice, it is recommended to choose appropriate algorithms based on problem characteristics to
maximize the advantage of the predictor.

Following the inner loop, we select 8 Pareto-optimal microstructure designs from the simulation Pareto
front, fabricate specimens, and mechanically test their actual performance, which concludes Round 0 of
the outer loop. However, since our simulator does not incorporate sophisticated constitutive models or
advanced fracture mechanics, the simulated properties of these microstructure designs deviate significantly
from their physical measurements. Unpredictable manufacturing flaws introduced by the 3D printer and
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Figure 3. Discovery of experimental Pareto-optimal microstructure designs while bridging the sim-to-real
gap. a, Experiment data of discovered microstructures and the simulation gamut at the end of Round 0. The
sim-to-real gap is defined as the symmetric difference between Pareto hypervolumes of the experimental Pareto

front and the simulation Pareto front. b, Workflow illustration of the outer loop as simplified from Fig. 1a. Physical
measurements conducted by the mechanical tester are used to close the sim-to-real gap through system identification.
The simulator finds its Pareto front using NMO (Fig. 2a) and proposes several Pareto-optimal microstructure designs
to the mechanical tester for physical validation. ¢, Evolution of experiment data and the simulation gamut within
four rounds of the outer loop, where the sim-to-real gap shrinks significantly. d, Pareto hypervolume of experiment
data and the simulation gamut, and the area of the sim-to-real gap over four rounds of the outer loop. e,
Representative microstructures discovered by the pipeline with optimal trade-offs. Numbers in parentheses indicate
the improvement of a design in Young’s modulus and toughness compared to homogeneous composites with various
volume fractions of the rigid material. f, Average relative simulation error on Young’s modulus and toughness in
each round of the outer loop. The error is calculated for all 50 discovered microstructures to showcase the
improvement in simulation accuracy. g, Quality of microstructure designs proposed by the simulator over the entire
outer loop. Proposal quality is evaluated by the experimental Pareto hypervolume of 8 proposed designs in each
round. The quality of the 10 randomly chosen microstructures before Round 1 (Rand.) is used as a reference.

measurement errors due to, e.g., boundary effects, further contribute to the sim-to-real gap. At this stage,
the less accurate simulator normally tends to overestimate the performance of microstructures on its
Pareto front since the optimization algorithm tries to exploit the discrepancies between simulation and
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reality. Thus, the experimental Pareto front of the selected microstructure designs is much smaller than the
simulation Pareto front (Fig. 3a). To close the sim-to-real gap, the outer loop of our pipeline improves
the accuracy of the simulator through system identification (Fig. 3b), where the exposed parameters of
the simulator are optimized to match simulation outputs with physical measurements for all discovered
microstructure designs (Supplementary Fig. 8). Rather than setting simulation parameters using physical
measurements of base materials directly, our approach computes parameters that holistically match the
properties of a diverse set of microstructures. The sim-to-real gap is effectively treated as a black box,
and system identification automatically absorbs all sources of errors into the exposed parameters of the
simulator. We choose Bayesian optimization (BO) as the solver for system identification, an algorithm
frequently used to optimize complex, non-convex functions with many local optima. The BO solver is
instantiated from multiple random seeds for better robustness. Moreover, by assigning different weights to
the source microstructures, we are able to prioritize matches for near-Pareto-optimal designs so that the
simulator generalizes better to other designs with desirable performance®*. This allows the simulator to
propose designs that more likely expand the experimental Pareto front instead of spending its modeling
capacity on designs far from optimal.

The outer loop uses the same proposal-validation workflow as the inner loop. Here, the simulator serves
as a surrogate model for the mechanical tester to search for experimental Pareto-optimal microstructure
designs with high sample efficiency. After Round 0, we assemble a dataset of 18 discovered microstruc-
tures, including 8 proposed Pareto-optimal designs from Round 0 and 10 additional random designs for
regularization in system identification (hollow blue markers in Fig. 3a). In each subsequent round, our
pipeline updates the simulator via system identification, searches for the simulation Pareto front through
the inner loop (NMO), proposes 8 Pareto-optimal microstructure designs to the mechanical tester (Fig. 3b),
validates their performance by physical measurements, and finally adds them to the dataset of discovered
microstructures. We run the outer loop for 4 rounds and visualize the evolution of experiment data and
simulated gamut in Fig. 3c. For a quantitative comparison, the advancement of their Pareto hypervolumes
is illustrated in Fig. 3d. As the pipeline proceeds, the Pareto front of experiment data gradually converges to
the simulation Pareto front and the sim-to-real gap ultimately decreases by an order of magnitude. Among
50 microstructures discovered by the pipeline in total, we select 6 designs on or near the experimental
Pareto front as the best examples and present their patterns in Fig. 3e. Compared with homogeneous
composites fabricated by mixing base materials at various ratios during 3D printing, they achieve up to
175.6% higher toughness under the same Young’s modulus, or 61.0% higher Young’s modulus at the
same toughness, demonstrating much better trade-offs between strength and toughness. Intuitively, the
outer loop parallels the inner loop as an automated self-learning process for the simulator**3°. Since the
microstructure dataset is augmented by 8 new microstructures per round, the simulator becomes more
accurate over time as depicted by its decreasing error from ground truth physical measurements (Fig. 3f).
With a higher accuracy, the simulator is thus able to propose increasingly better microstructure designs in
each round, as characterized by the improving Pareto hypervolume of their physically validated properties
(Fig. 3g). Therefore, even with our relatively simple simulator—which omits complex, advanced modeling
techniques—our pipeline simultaneously bridges the sim-to-real gap and discovers microstructures with
experimentally verified Pareto-optimal performance.

From a methodology perspective, our data-driven computational approach inverts the standard design
process: instead of implementing handcrafted or bioinspired toughening mechanisms to fabricate synthetic
composites*®37 we can interpret these mechanisms from automatically discovered Pareto-optimal designs
even without any prior knowledge (Fig. 4a). To that end, we first notice that microstructures near the
experimental Pareto front can be clustered into four major families, where designs in the same family
are structurally similar!? (Fig. 4b). The representative stress-strain curve from each family exemplifies
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Figure 4. Analysis of families and intrinsic toughening mechanisms using discovered Pareto-optimal
microstructures. a, Schematic of the analysis workflow. Microstructures near the Pareto front are grouped into
families and further split into subfamilies>*. The mechanical performance of each family is verified, while the
pattern variation in each subfamily is studied in a low-dimensional embedding space. b, Seed microstructures of four
families and their mechanical performance compared with homogeneous composites. ¢, Representative stress-strain
curves of microstructures in each family obtained from mechanical testing. d, e, The Isomap embedding space of an
example subfamily before (d) and after (e) interpolation. Some representative patterns are illustrated. Microstructure
properties are encoded in colors (Young’s modulus: the blue channel; toughness: the red channel). Seed patterns are
highlighted in orange boxes. f, g, h, Toughening mechanisms observed in experiment and simulation: bridging,
deflection and branching. Snapshots are taken from validation microstructures in Family 1 (f), 2 (g), and 3 (h).
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how these designs improve fracture resistance considerably over the rigid base material while maintaining
comparable Young’s moduli, resulting in optimal strength-toughness trade-offs (Fig. 4c). Therefore, the
microstructure families allow for extracting and interpreting toughening mechanisms by groups rather than
individual designs. To verify the discovered families, we treat the physically measured microstructures as
seeds and generate a local performance gamut for each family through dense sampling, from which three
validation samples near the Pareto front of each family are selected and validated by the mechanical tester
(Supplementary Fig. 16 and Supplementary Table AS5). Moreover, to intuitively explore microstructures
with similar appearance and performance, we take advantage of our well-trained simulator to generate
a local gamut for each seed design near the experimental Pareto front and compute a low-dimensional
embedding space using Isomap® (Fig. 4d). We additionally build an interpolation model for neighboring
patterns in the embedding space®* to generate patterns that are potentially missed in dense sampling,
which eventually refines the embedding space (Fig. 4e).

By analyzing tested specimens and simulation videos, the discovered microstructure families allow
us to successfully identify some well-known mechanisms of toughness enhancement, such as bridging,
deflection, and branching!83%2 (Fig. 4f-h). These mechanisms resist crack growth and avoid the
formation of clean cleavage like homogeneous composites (Supplementary Fig. B4). Their prominence
varies depending on the distribution of soft material. Bridging is mostly observed in Family 1, where
parallel bars of soft material absorb more energy through elastic deformation and introduce additional
stress resistance by crack blunting to slow down crack propagation (Fig. 4f and Supplementary Fig. 22).
Deflection is witnessed in both Family 1 and 2, as characterized by chunks of soft material that withstand
a large strain and disturb the cracks (Fig. 4g and Supplementary Fig. 22-23). Conversely, branching effects
are predominant in Family 3 and 4, which feature scattered elements of soft material. In this case, the
propagation energy of the cracks dissipates in the form of branched cracks due to the trapping effect from
soft material*? (Fig. 4h and Supplementary Fig. 24-25). In addition, we also observed other toughing
mechanisms that do not obviously fall into the three prevailing categories. For example, some isolated soft
material elements are assigned to the edge of a microstructure pattern (Supplementary Fig. 24), either near
the notch tip or on the path of crack propagation. Despite not being organized into shapes like bars or
circles, such elements still effectively dissipate energy and delay crack propagation'. Overall, it is common
among discovered families that soft material elements enhance toughness through crack blunting while
stiff material elements are integrally connected to maintain strength®*. Most importantly, the critical soft
and stiff elements that contribute to balanced Young’s modulus and toughness are automatically discovered
by our system via mutations in predictor-guided evolutionary search, with no prescribed knowledge of
existing toughening mechanisms. These crucial structural features are preserved throughout the entire
pipeline after thorough validation by the simulator and the mechanical tester. System identification further
tailors the simulator to reproduce unique fracture patterns for these structural features.

In addition, our computational pipeline has adequate scalability to solve Pareto-optimal microstructure
discovery problems in higher design resolutions. For example, we applied our pipeline to discover the
Pareto front between stiffness and porosity in isotropic porous materials (see Supplementary Information
for details about fabrication, experiment, and simulation). The microstructure patterns in this case study
are represented by 182x 104 grids, constituting a significantly larger design space. Nonetheless, our
pipeline still maintains excellent sample efficiency in Pareto front discovery (Supplementary Fig. 29).
Moreover, our approach manages to identify designs with theoretically optimal performance, prescribed
by the Hashin-Shtrikman upper bound***> (Supplementary Fig. 28).
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Conclusions

In conclusion, we have presented a generalizable, scalable, and efficient computational approach that
does not require expert knowledge to automatically discover microstructured composites with optimal
trade-offs between strength and toughness. We integrate three distinct evaluation methods—experimental
measurement, numerical simulation, and machine learning inference—in a data-driven proposal-validation
framework. The essence of our approach is a nested-loop workflow that improves the sample efficiency of
slow, accurate evaluators by harnessing fast, approximate evaluators as surrogate models and progressively
improving their accuracy. Our pipeline achieves superior sample efficiency when discovering the simula-
tion Pareto front, running an order of magnitude fewer simulations than other state-of-the-art structural
optimization algorithms. With a data-driven self-learning simulator, we discover the experimental Pareto
front of Young’s modulus and toughness using only a few dozen physical measurements. Furthermore, our
automated strategy is able to identify prevailing toughening mechanisms that were initially discovered
by field experts based on intuition or biomimicry and through experimental trial-and-error. This is an
inversion of traditional composite design approaches since toughening mechanisms stem from Pareto-
optimal designs. Most importantly, our pipeline circumvents time-consuming, labor-intensive development
of advanced simulation models and eliminates the need for any prerequisite knowledge of toughness
enhancement. Therefore, our pipeline is readily applicable to various trade-off problems well beyond
the field of solid mechanics, especially where simulation struggles to match reality, such as polymer

chemistry*®, computational biology*’*%, fluid dynamics**~°, meteorology>'~2, and robotics’>.
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Methods

Specimen Manufacturing

All homogeneous and microstructured composites were manufactured on a Stratasys Object 260 Connex multi-material 3D
printer with a nominal resolution of 300 dpi, 600 dpi, and 800 dpi in x, y, and z directions, respectively. VeroWhitePlus (VW+)
and TangoBlackPlus (TB+), two acrylic-based photopolymers, were used as base materials. The model orientation is visualized
by the coordinate axes in Supplementary Fig. 3. Specifically, microstructure patterns are located on the x-y plane and sweep
along the z direction, where the longest dimension of the model aligns with the y direction. Regarding the scale of printed
specimens, each pixel in a microstructure pattern is calculated to be a 260 pm square, a reasonable approximation to the least
common multiple of the droplet dimensions in x and y directions.

To enable droplet-level control, we employed a voxel printing approach supported by the printer. In the voxel printing mode,
droplet configurations were precomputed locally and sent to the printer in real time. This allows for printing homogeneous
composites mixed by base materials at a given ratio. For any volume fraction of the rigid base material, denoted by ¢, a printing
model was created by probabilistically assigning base materials to droplets, where each droplet was assigned with the rigid
material at a probability of ¢. Since the base materials are miscible, homogeneous composites were printed by mixing the
droplets on the fly. Homogeneous composite materials with ¢ = 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, and 0.9 were printed as
benchmarks.

Physical Measurement

For Young’s modulus measurements, all testing specimens were printed following the dimensions recommended in ASTM
D638. For toughness measurements, as there is no standard reference for heterogeneous composites, we devised our specimens
shown in Supplementary Fig. 3. The dimensions of a toughness specimen are 104 x52x3.2 mm. A notch with a length of 10.4
mm was printed, equivalent to 20% of the specimen’s width. After that, a triangle cut was added using a milling machine at a
depth of 7.8 mm, which is 15% of the specimen’s width. The length of the gripper area on either side is 25 mm, leaving a
54 mm gauge area in the middle.

After printing, all specimens were carefully cleaned to remove support material and dried at room temperature. An
ultraviolet (UV) light post-curing process was conducted on both top and bottom sides of the sample to get more uniform curing.
This step was performed in a Fusion UV system with a constant belt speed of around 2 cm/s. Additionally, the printed notch of
each toughness specimen was cleaned by a new razor blade to avoid the influence of residual support material at the tip.

All specimens were tested on an Instron 5984 universal testing machine with a maximum load of 150 kN. Tensile tests for
Young’s modulus measurements were conducted according to ASTM D638. Four specimens were tested for each composite
and the results were averaged. On the toughness side, there is no existing standard targeting heterogeneous composites. Thus,
we employed the following tensile test method. The specimen was pulled at a rate of 2 mm/min. Data acquisition stopped once
the crack propagated entirely through the specimen. Because crack propagation in microstructured composites is nonlinear, the
toughness is defined as the energy absorbed and dissipated per unit volume; namely, the area under the stress-strain curve?.
At least four specimens were tested for each composite, where at least three specimens that manifested the most common
and consistent fracture behaviors were considered valid. These valid toughness measurements were averaged, from which a
representative stress-strain curve was selected. The same procedure was followed when testing homogeneous composites for
consistency. Measured stress-strain curves from the toughness test of several representative microstructures are provided in
Extended Data Fig. 1. For each microstructure design, four specimens were fabricated and measured (distinguished by color).
The stress-strain curves of the same microstructure pattern are generally consistent, with standard deviations consistently less
than 5% of the mean for Young’s modulus and less than 20% for toughness.

Interface Engineering

Interfaces between the rigid and soft base materials are engineered by applying crafted droplet patterns in interface areas,
i.e., half-pixel-wide areas around shared edges and vertices of adjacent pixels (Supplementary Fig. 4). The droplet patterns
approximate a 50/50 mixture of the base materials and vary depending on the orientation of shared edges. Based on the
coordinates defined in Supplementary Fig. 3, droplets are arranged in alternate columns for edges along the x direction (vertices
included), and alternate rows for edges along the y direction (vertices excluded; see Supplementary for details). The droplet
patterns remain consistent in the z direction during 3D printing. Supplementary Fig. 5 compares the performance of 5 random
microstructures manufactured with engineered interfaces, non-engineered interfaces, and default interfaces to the printer. The
results demonstrate that our interface engineering method yields the best trade-off between Young’s modulus and toughness in
printed specimens. In addition, the engineered interfaces are modeled using an interface material in simulation and count as the
third base material.
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Extended Data Figure 1. Measured stress-strain curves from the toughness test of six microstructures
discovered by our pipeline (a-f). The microstructures are selected from random stratified sampling to cover a wide
range of ¢. We showcase the stress-strain curves of all tested specimens (distinguished by color) for each design.

Simulation
The simulator comprises a pair of finite element method (FEM)-based virtual testers, which predict Young’s modulus, toughness,
and non-linear stress-strain response given a microstructure pattern. The Neo-Hookean material model is used for all three
base materials (VW+, TB+, and interface material) in a 2D setting (see Supplementary for details). The FEM grids represent
simplified geometries of manufactured specimens. To model the interfaces between the rigid and soft materials, microstructure
units in the FEM grids are upsampled by two times, and elements located at interfaces are assigned with the interface material
(Supplementary Fig. 6). Dirichlet boundary conditions are enforced on displacements in the pulling direction. An explicit
solver is used for time integration as it is usually preferred for dynamic simulations and it is simple to implement. Material
viscosity is modeled using numerical damping and controlled by a global damping coefficient. For toughness, crack initiation
and propagation is modeled by thresholding the strain energy density of each element as derived from the Neo-Hookean model,
where the element is removed upon exceeding a material-specific strain energy density threshold. Simulation stops when the
gauge stress drops below 20% of the ultimate strength, and toughness is calculated using the area beneath the stress-strain curve.
For Young’s modulus, a small constant strain is applied, and the grid is allowed to converge to an equilibrium within a fixed
number of timesteps. Young’s modulus is then obtained from the measured gauge stress. Algorithmic details and parameter
values of the virtual testers can be found in Supplementary.

Our simulator was implemented using the high-performance Taichi programming language to harness the tremendous
acceleration power of graphics processing units (GPU). To further increase the throughput, multiple microstructures were
batched and simulated simultaneously to enable maximum GPU utilization (Supplementary Fig. 7).

System Identification

The simulated behaviors of a microstructure is contingent on several tunable parameters in the simulator, including Young’s
moduli, Poisson’s ratios, and strain energy density thresholds of the base materials, and a global damping coefficient. These
parameters are optimized in system identification for a close match between the simulation output and the physical measurements.
For Young’s modulus, the mean relative prediction error is minimized over a collection of composites, referred to as the system
identification dataset. For toughness, the minimization objective is a combination of mean relative prediction errors on both the
toughness value and the stress-strain curve, where the relative error of the curve is defined as the area between simulated and
experimental stress-strain curves divided by experimental toughness. To fully utilize the modeling capabilities of the virtual
testers, we keep parameter values separated between Young’s modulus and toughness simulation. Furthermore, microstructures
in the dataset are weighted to reflect priority in system identification (Supplementary Fig. 9). First, microstructures closer
to the experimental Pareto front have larger weights since we mainly focus on near-Pareto-optimal designs. Second, to
alleviate possible bias from an uneven performance distribution in the dataset, weight penalties are inflicted upon clusters of
microstructures whose physical measurements are too close to one another. A more detailed mathematical formulation of
system identification is provided in Supplementary. We used batch Bayesian optimization (BO) to solve the minimization
problem due to its excellent data efficiency and compatibility with our batch simulation mechanism. The Bayesian optimization
algorithm was repeated for 5 times using different random seeds, after which the best solution was selected (see Supplementary
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for implementation details).

Neural Network-Accelerated Multi-Objective Optimization (NMO)

We developed the NMO algorithm to explore the design space of microstructures and discover Pareto-optimal samples in high
sample efficiency. The exploration started from randomly generated microstructures as the first generation. Distinguishing from
NSGA-II algorithms that compute offsprings from mutation and crossover operations, NMO employs the predictor, which
contains a pair of residual CNNs, as a surrogate model to guide the proposal of the next generation (see Supplementary for
details). Both networks are instantiated from the same architecture template, but the network for toughness is much larger. This
allows for greater learning capacity to capture the complex mapping from microstructure patterns to toughness (Supplementary
Fig. 10). In each iteration, the networks were trained on the simulation results of all discovered microstructures. Based on their
predictions, a modified NSGA-II algorithm was run to propose Pareto-optimal samples that likely expand the hypervolume of
the current gamut. The proposed samples became the next generation of microstructures once their performance was validated
by the simulator.

The modified NSGA-II algorithm within NMO has a custom mutation operator and an additional hash-table-based
deduplication mechanism. The custom mutation operator substitutes the original mutation and crossover operators in offspring
generation. It changes a microstructure pattern at varied scales probabilistically, including flipping a single pixel, drawing
a rasterized line, or overwriting a rectangular area of pixels. Symmetry and structure constraints are subsequently enforced
on the mutated pattern. The hash-table-based deduplication mechanism prevents microstructures from being added to the
next generation if they have already been discovered, and is a faster alternative to exhaustive match in existing patterns. The
NMO algorithm stores discovered microstructures in a global hash table, while each individual run of the modified NSGA-II
algorithm uses a separate hash table. More implementation details are provided in Supplementary.

We note that the validation of the inner loop and the outer loop were conducted separately. While NMO was evaluated for
the inner loop in Fig. 2, we directly used the modified NSGA-II to verify the outer loop and generate the results in Fig. 3. Despite
being evaluated independently, NMO is readily applicable to the computational discovery pipeline since our modularized
implementation switches between optimization algorithms very easily.

Sample Selection for Physical Validation

In each round of the outer loop, several microstructures near the simulation Pareto front were selected for physical validation
(Supplementary Fig. 14). The selection algorithm has two stages. First, to identify microstructures that are sufficiently close to
the Pareto front, we associated each microstructure with a rank induced by Pareto dominance. By our definition, the 1st rank
comprises microstructures on the Pareto front of the whole gamut, and the i-th rank contains microstructures on the Pareto front
of a partial gamut where those in higher ranks are excluded. Then, a microstructure qualified as a selection candidate if the
following three criteria were satisfied: (1) it is in the 3rd rank or higher; (2) its simulated performance trade-off is better than the
actual performance trade-off of homogeneous composites; (3) its toughness is higher than the microstructure with the largest
Young’s modulus in the gamut. Second, we chose 8 microstructures from the candidates to cover a wide range of mechanical
performance and improve the diversity among discovered microstructures. To that end, the candidate microstructures were
divided into 8 radial bins according to their normalized mechanical performance. Then, we solved a combinatorial optimization
problem, where one microstructure was chosen in each bin such that the selected microstructures maximally distinguished
from discovered ones and from each other. The optimization problem was tackled using a beam search algorithm that finds
an approximated best solution in a few seconds. In Supplementary, we provide a more detailed description of the selection
algorithm, including a mathematical formulation of the combinatorial optimization problem.

Analysis of Microstructure Families and Toughening Mechanisms

After the nested-loop pipeline terminated, eleven microstructures with near-optimal trade-offs between experimental Young’s
modulus and toughness were categorized into four families (Fig. 4b). We refer to these microstructures as seed microstructures.
They were used to generate more pattern variations in each family and verify that the similarity in mechanical performance is
preserved. This procedure breaks down into the following steps. To start, a family-specific simulator was obtained in each family
from system identification on all near-Pareto-optimal microstructures. In this case, the seed microstructures were assigned with
large identical weights, while others outside the family were assigned with small identical weights for regularization purposes.
Such family-specific simulators have much lower prediction error on the seed microstructures in the family compared to the
global simulator in Round 4 (Supplementary Table 7). Then, based on simulation results from the family-specific simulators,
we ran a dense evolutionary sampling algorithm around seed microstructures to generate a local gamut for each family. The
sampling algorithm is akin to the modified NSGA-II algorithm but limits the mutated patterns within a maximum of 16-pixel
difference from seed microstructures. There is neither tournament selection of parents nor competition among the population,
hence the target is simply to generate a gamut as dense as possible. Lastly, three near-Pareto-optimal microstructures were
chosen from the resulting local gamut for physical validation (Supplementary Fig. 16), whose physical measurements were
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demonstrated to be comparable to seed microstructures (Supplementary Table AS). Therefore, we confirmed that the discovered
families contain microstructures with similar patterns and mechanical performance.

To visualize the pattern variation in each microstructure family, we divided each family into subfamilies by extracting
microstructures within a 16-pixel radius from each seed microstructure, allowing any microstructure to occur in multiple
subfamilies. For every subfamily, a 2D embedding space was computed for all microstructure patterns using Isomap>®. The 1st
Wasserstein distance’®, i.e. the earth mover’s distance (EMD), was used as the distance metric between microstructure patterns
instead of the Euclidean distance (Supplementary Fig. 18), since EMD takes into account pixel distributions in microstructure
patterns and better reflects differences in geometric shapes. Supplementary Fig. 17 and B1 illustrate the visualized embedding
spaces of 11 subfamilies across 4 families. Furthermore, we built an interpolation model for neighboring microstructures in
the Isomap embedding space to generate more microstructures that might be missing in our dense sampling (Supplementary
Fig. 19). Our interpolation method is based on Wasserstein barycenters from optimal transport theory>’>®, which has been
successfully demonstrated as a robust, intuitive interpolation scheme among voxelized shapes . In this way, we generated
around 5% more microstructures patterns in each subfamily on average and used them to refine the Isomap embedding spaces.
Comparison between the embedding spaces before and after interpolation is illustrated in Supplementary Fig. 21, B2, and B3.
A mathematical formulation of EMD and our interpolation scheme can be found in Supplementary.

The identification of microstructure families simplifies the analysis of intrinsic toughening mechanisms leading to near-
optimal trade-offs between Young’s modulus and toughness. As microstructures have similar patterns and performance in each
family, they typically share common structural features that enhance fracture resistance. Thus, we used video recordings of
seed microstructures and validation microstructures in each family to observe and interpret several predominant toughening
mechanisms. For each microstructure, the simulation video produced by family-specific simulators was validated against
actual footage from mechanical testing to verify that the mechanisms are properly captured in simulation. The representative
mechanisms of each microstructure family are thoroughly discussed in Supplementary.

Data Availability
The results supporting the main conclusions of the manuscript are included in the manuscript and supplementary material.
Detailed designs, raw data, and codes are available from the corresponding author on reasonable request.

Code Availability
The code of the proposed framework and for generating figures and tables is available from the corresponding authors on
reasonable request.

Methods References

54. Hu, Y, Li, T.-M., Anderson, L., Ragan-Kelley, J. & Durand, F. Taichi: a language for high-performance computation on
spatially sparse data structures. ACM Transactions on Graphics (TOG) 38, 6, 1-16 (2019).

55. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, (2016), 770-778.

56. Villani, C. Topics in optimal transportation 58 (American Mathematical Soc., 2003).

57. Agueh, M. & Carlier, G. Barycenters in the Wasserstein space. SIAM Journal on Mathematical Analysis 43, 2, 904-924
(2011).

58. Kantorovich, L. V. On the translocation of masses. In Dokl. Akad. Nauk. USSR (NS), 37 (1942), 199-201.

59. Solomon, J. et al. Convolutional wasserstein distances: Efficient optimal transportation on geometric domains. ACM
Transactions on Graphics (TOG) 34, 4, 1-11 (2015).

Acknowledgements

The authors thank B. von Vacano, R. Konradi, K. Stoll, H. H. Goetzke, R. de Oliveira, L. Chen, and F. Zhang from BASF, A.
Lesser from University of Massachusetts Amherst, Y. C. Yang from University of Maine, R. Bai from Northeastern University,
Y. Mao and S. Lin from MIT for discussions. We thank B. Zhu from Dartmouth College, D. Chen from Inkbit, M. Foshey, L.
Makatura, M. Guo, and R. Su from MIT for discussions and proofreading. We thank S. Hudson from MIT for the support
of mechanical testing equipment. We thank M. K. Lukovi¢ and Y. Tian from MIT for the implementation of the DGEMO
algorithm. We also thank R. White and F. Raton for the administration of the project.

16/17



Author Contributions

B.L., W.S., B.D., and W.M. conceived the idea. B.L. implemented the proposed framework, processed the experiment data,
performed algorithm-related evaluation, and conducted computational analysis on Pareto-optimal designs. W.S. manufactured
the test specimens, conducted physical measurements, and interpreted the toughening mechanisms. Y.H. prototyped the FEM
simulator. B.L. and B.D. designed and implemented the case study on porous microstructures. T.-H.O., Y.L.., and L.S. was
involved in the design of the proposed framework. B.L. and B.D. led the writing of the manuscript. W.M. supervised the work.
All authors discussed, edited, and reviewed the manuscript.

Competing Interests

The authors declare no competing interests.

Additional Information

Supplementary information is available for this paper.

1717



arXiv:2302.01078v1 [cond-mat.mtrl-sci] 1 Feb 2023

Supplementary Information for “Computational
Discovery of Microstructured Composites with
Optimal Strength-Toughness Trade-Offs”

Beichen Li'2, Bolei Deng'?3, Wan Shou'>*", Tae-Hyun Oh’, Yuanming Hu'?, Yiyue
Luo'?, Liang Shi'?, and Wojciech Matusik'->>"

IComputer Science and Atrtificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA,
USA

2Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge,
MA, USA

3Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
“Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA

>Department of Electrical Engineering, POSTECH, Pohang, Korea

*Corresponding authors: wanshou@mit.edu or wshou@uark.edu (W. S.); wojciech@csail.mit.edu (W. M.)

ABSTRACT

1 Problem Definition

1.1 Definition of Microstructures

a b
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Supplementary Figure 1. a, An example microstructure. b, Symmetry constraints on microstructure patterns. ¢. Structural
constraints on microstructure patterns depending on volume fractions of the rigid base material.

As the structural unit of microstructured composites in this work, a microstructure is digitally represented as a 20x 20 binary
matrix that uniquely defines the spatial arrangement of two base materials in a composite (Supplementary Fig. 1a). The matrix
is also called a microstructure pattern. The soft base material is indicated by a value of 0 in a microstructure pattern while the
rigid material corresponds to 1. As a microstructure pattern is conceptually similar to an image, we refer to its elements as
pixels to avoid confusion with those in the finite element method (FEM).

To construct the design space for computational exploration, we additionally pose two types of constraints on microstructure
patterns. Symmetry constraints (Supplementary Fig. 1b) require all microstructures to be invariant to reflections and 90-
degree rotations so that they have identical mechanical properties in horizontal and vertical directions. Structural constraints
(Supplementary Fig. 1¢) limit the volume fraction of the rigid material, denoted by ¢, between 0.5 and 0.85. Also, pixels
around the corner of a pattern are restricted to 1 depending on ¢. If 0.5 < ¢ < 0.8, only the corner pixel is restricted; otherwise
(0.8 < ¢ <0.85), the rule extends to every pixel whose center lies within a 4-pixel-wide radius from the corner vertex. The



upper bound ¢ < 0.85 ensures reliable and consistent toughness measurements in mechanical testing, because the fracture
behaviors of very stiff microstructures (¢ > 0.85) tend to be highly stochastic and result in low toughness'. The lower bound
¢ > 0.5 excludes designs with inferior Young’s modulus and toughness due to a predominant influence from the soft material.
All constraints aggregated, the design space of microstructures contains more than 10'® possibilities.

1.2 Trade-Off in Mechanical Performance
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Supplementary Figure 2. Positive correlation between strength and Young’s modulus, deduced from the physical
measurements of microstructures discovered by our approach.

In this work, we focus on the trade-off between strength and toughness in microstructured composites. Strength is
represented by Young’s modulus. Toughness is defined as the energy absorbed and dissipated per unit volume in a tensile test,
namely, the area under the stress-strain curve®. As there is no existing standard for the toughness measurement of heterogeneous
composites, we employed a test method as described in Methods.

Our decision of representing strength using Young’s modulus is supported by numerous evidences. From a theoretical
perspective, strength is generally determined by defects in materials. According to Griffith?, fracture strength (o) can be
approximated by 6y = /2EY;/mc, where E is Young’s modulus, 27; is the energy per unit area, and c is Griffith-like flaw size.
Further, the theoretical strength of a solid is often approximated as*>: oy, = E/10. The microstructures in our work can be
treated as an inclusion of soft material in a hard matrix, or brittle materials engineered with defects. Thus, it is reasonable
to assume that strength is positively correlated to Young’s modulus. Besides, it has been known that many materials show a
theoretical linearity between strength and Young’s modulus®’. Meanwhile, such a relationship is empirically evidenced by the
physical measurements of microstructures discovered by our system (Supplementary Fig. 2). Therefore, tackling the trade-off
between Young’s modulus and toughness effectively resolves the strength-toughness conflict. In practice, the representation
using Young’s modulus also reduces the computational cost in simulation as Young’s modulus can be calculated at a much
smaller strain.

2 Interface Engineering
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Supplementary Figure 3. Dimensions of a toughness specimen with the area around the notch zoomed in. Coordinate axes
indicate the orientation of the specimen in 3D printing.
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Supplementary Figure 4. Schematics of interface engineering. a, Definition and classification of interface areas. b,
Droplet arrangements in interface areas. All coordinate axes conform with the definitions in Supplementary Fig. 3.

Pixel dimensions The center area The interface area
x (ax) y (ay) X y x (dy) y (dy)
3 5 1 3 1 1
3 6 1 2 1 2
4 5 2 3 1 1
4 6 2 2 1 2

Supplementary Table 1. Possible dimensions of a pixel and its subdivided areas after quantization into droplets for voxel
printing. All units are droplets.
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Supplementary Figure 5. Comparison of microstructure properties under three interface configurations: default to the
printer (default), not engineered (no engineering), and engineered (ours). Standard deviations from multiple measurements are
reflected in error bars.

Upon examination on printed specimens, we noticed that the interface between base materials is relatively strong but can
still be the weakest spot during crack propagation®. Thus, we engineered the interface to enhance its strength and improve the
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toughness of microstructures. This was done by applying manually designed droplet patterns in interface areas. As illustrated
in Supplementary Fig. 4, interface areas are located around shared edges or vertices of adjacent pixels, where one base material
transitions into the other. There are three types of interface areas in total. Let (i, j) be the x and y indices of a pixel in an
entire specimen model. Type-1 areas connect two neighboring pixels (i, j) and (i + 1, j) along the x direction, i.e., the direction
of crack propagation. Type-2 areas connect two neighboring pixels (i, j) and (i, j + 1) along the y direction, i.e., the pulling
direction in tensile testing. Type-3 areas join all four surrounding pixels. Whenever an interface area covers two pixels of
different material assignments, droplets in that area are specially arranged to approximate a 50/50 mixture of base materials.
Similarly, let (i, /') be the x and y indices of a droplet in the specimen model. Droplets appear in alternating rows in Type-1
and Type-3 areas, where each droplet (i, j') follows the parity of i + j. In contrast, droplets appear in alternating columns in
Type-2 areas, each following the parity of j+i'. Such patterns remain constant in the z direction.

In the context of voxel printing, a pixel may contain 3x5, 3x6, 4x5, or 4x6 droplets after quantization. Supplementary
Table 1 provides the quantized dimensions of a pixel’s internal area contingent on the pixel size. Quantized dimensions of
interface areas are then derived from the pixels they intersect with. Type-1 and type-3 areas may contain 2x2 or 2x3 droplets,
while type-2 areas vary among 1x2, 1x3, 2x2, and 2x3 droplets in size.

We compared our method of engineering the interface between base materials against two baseline approaches. By default,
the 3D printer applies prescribed droplet configurations in interface areas that are invisible to the user. Conversely, the interface
is completely user-specified in voxel printing mode. Therefore, it is possible to perform no engineering and make transitions at
pixel boundaries as sharp as possible. To test these interface options, we randomly drew 5 samples from microstructures with
0.5 < ¢ <0.75 and compared between the mechanical properties of their printed specimens (Supplementary Fig. 5).

3 Computational Pipeline

3.1 Simulation
The simulator estimates the performance of microstructures without conducting physical measurements. Given an input
microstructure pattern, it simulates the actual mechanical testing process on printed specimens using FEM. Young’s modulus
and toughness are then computed from recorded stress-strain data. The two virtual testers inside the simulator use the same
material model but differ in implementation details and parameter settings.

The nonlinear stress-strain response of the base materials is approximated using a 2D Neo-Hookean model. We followed
the strain energy density function in Sifakis et al.”:

W:%(Il —2—1nJ)+%(an)2, (1)

where 1 and A are the Lamé parameters, J = det(F) is the determinant of the deformation gradient (F), and I; = tr(C) is the
first invariant of the right Cauchy-Green deformation tensor (C = FTF). u and A are derived from Young’s modulus (E) and
Poisson’s ratio (V) as follows

E/
H=a2arvy
By 2
T a+vh(1—2v)’
where E’ and v/ are converted from E and Vv as follows'?
V= L,
1+v 3
, E(1+2v) 3
 (1+v)2

The Young’s moduli and Poisson’s ratios of the base materials were regarded as optimizable parameters in system identification
(Section 3.2).

The virtual tester for toughness operates on a regular grid of 200x 160 quadrilateral finite elements (Supplementary Fig. 6a)
where each node has four degrees of freedom. The grid contains 5x4 tiles of microstructure units where each unit covers a
40x40 sub-grid. Notably, a microstructure unit doubles the resolution of the pattern due to modeling the interface between base
materials. The interface was modeled as a third homogeneous material, referred to as the interface material. Finite elements of
the interface material and the base materials are equally sized. This is evidenced by our microscopic observation of printed
specimens, which indicates that the width of the interface is typically around 100 um and comparable to half of the pixel size.

4/39



y Microstructure unit e iiiiieiiieeaaa y & Microstructure unit
160 f Ly 80 /
8 Puling 80 Pulling
80,1 : I direction ~ : 40 direction
b (R B : one-element
wide
0 —_— 0
0 100 200 x 0 40 x
(3
Microstructure pattern
0 40 x
Il [] Base materials
. Interface material
d

= =omw fixed at
R e — o104

« ". e Il 5 1

Converged at
E=1.6724 GPa

0 500 1,000 1,500 2,000
Timestep

E (GPa)
o N A O

1

0.00 0.01 0.02 0.03
Strain

Supplementary Figure 6. a, Dimensions of the FEM grid in the toughness virtual tester. b, Dimensions of the FEM grid in
the Young’s modulus virtual tester. ¢, upsampling from a microstructure pattern to a 40x40 FEM subgrid. d, An example
simulation process of the toughness virtual tester. e, An example simulation process of the Young’s modulus virtual tester.

The computation of material assignment in a sub-grid is analogous to image upsampling. As shown in Supplementary Fig. 6c,
the FEM subgrid is superimposed on the original pattern where the center of the bottom-left element aligns with the center
of the bottom-left pixel. An element inherits the corresponding pixel value if it is located entirely within a pixel; otherwise,
the material assignment depends on the values of surrounding pixels in the same way as interface engineering. To mimic the
pre-cracking of real specimens, a single-element-wide notch and a triangular cut were applied at the grid position of (0,80).
The “removed” elements were assigned with a void material and do not generate nodal forces under deformation. Overall,
this configuration correlates well with a printed specimen despite a simpler geometry to reduce computational cost. Dirichlet
boundary conditions were enforced on the displacement in the y-direction during testing. Nodal forces in each element were
computed from the Neo-Hookean model using four Gaussian quadrature points. Nodal velocities and displacements were
then obtained from explicit time integration. Crack initiation and propagation were modeled on a per-element basis. To that
end, strain energy densities were computed at the quadrature points together with nodal force contributions. An element was
considered failed and reassigned with a void material once the maximum strain energy density at quadrature points exceeded a
certain threshold specific to each material. Simulation terminated when the global strain went beyond 0.3 or the measured
stress fell below 20% of the ultimate tensile strength, with the only exception being the soft material for which the maximum
strain was unlimited. In the end, toughness was calculated by integrating the stress-strain curve.

While it is possible to compute nodal velocities and displacements using an implicit solver, we chose an explicit solver
since explicit solvers are generally preferred for nonlinear FEM simulations that involve dynamic failure. In particular, the
virtual tester must operate at a sufficiently small time step (around 1077 s) to precisely capture the crack propagation in
microstructures and maintain numerical stability. Under such a strict requirement, explicit solvers are more efficient due to
simpler implementation and better compatibility with many-core hardware accelerators like graphical computing units (GPU).
However, we noticed that the virtual tester ran too slow at a strain rate that matched actual mechanical testing. In this case,
simulating a microstructure till an assumed failure strain of 0.02 required 1.62x 108 time steps, taking almost one hour to
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finish on an NVIDIA Tesla V100 GPU under maximum throughput. The running time is impractical to our computational
pipeline because the simulation budget will be too tight to allow for a proper exploration of the combinatorial design space. As
a workaround for this challenge, we used a much larger strain rate (equal to 20) to speed up the simulation while introducing
system-wide numerical damping to model material viscosity. Once the velocity field was updated in every time step, nodal
velocities v; ; were smoothed by a 3 x3 filter defined as

11
o
vii=(0—a)vij+ gk—zl 1—21 Vidrk, j+ls “4)

where o0 = YAt is the product of the time step At and a constant damping coefficient y. Under the assumption that all nodes
have identical mass, this step effectively interpolates between the momentum of each node and the mean momentum in a 3x3
neighborhood. A larger y leads to stronger damping effects and potentially accounts for more material viscoelasticity. Our
observations suggested that larger y values work better with stiffer microstructures in suppressing oscillation. As there is no
trivial way to determine the value of ¥ for all microstructures, we optimized ¥ in system identification instead.

The virtual tester for Young’s modulus has a much smaller grid of 80x40 quadrilateral elements, consisting of 2x 1
microstructure units (Supplementary Fig. 6b). The material assignment to elements was computed using the same image
upsampling method and no notch or triangular cut was added. This configuration qualitatively matches the gauge area of an
ASTM D638 Type 1 specimen. A constant displacement boundary condition was enforced in the y-direction where the global
strain remained fixed at 10~*. Nodal forces were computed from the aforementioned Neo-Hookean model. Explicit time
integration was used to update velocities and displacements. Negative exponential damping was applied to the velocity field as
follows

/ —YAt
vij=vije ™, ®)

where Ar =~ 1077 s was used as the time step and the damping coefficient y was optimized through system identification. The
solver was allowed to reach a static equilibrium within 10* time steps, after which the Young’s modulus was derived from the
gauge stress. Although an implicit linear elasticity solver is usually used to virtually measure Young’s modulus, we directly
reused the explicit solver in the toughness simulator for simplicity. Note that the Young’s modulus virtual tester is not the
bottleneck of the whole simulation.

In pursuit of maximal computation efficiency, our customized simulator was implemented using the Taichi programming
language!', an emerging high-performance programming language tailored to computer graphics applications including
physics-based simulation. Taichi compiles our source code written in Python syntax into optimized machine programs that,
when executed, exploit the massive parallel computing power of GPUs. However, we found that simulating microstructures
sequentially resulted in low GPU utilization due to inadequate workload. Our solution was adding a batching mechanism to
enable concurrent simulation of multiple microstructures, where each microstructure can be evaluated using a unique set of
optimizable parameters. This allows for maximum GPU usage regardless of its power, resulting in a much higher throughput.

We evaluated simulation speed by timing the simulator under different batch sizes and strain limits. All performance data
was collected on a machine with 8 CPU cores and an NVIDIA Tesla V100 GPU, averaged across 5 consecutive runs. Results
are shown in Supplementary Fig. 7. For Young’s modulus, simulation only becomes slower when at least 20 microstructures
are batched together. While increasing the batch size beyond this point leads to a much longer simulation time, the throughput
continues to improve, implying that GPU utilization is still approaching its maximum. A batch size of 100 is required to reach a
peak throughput of less than 0.015 s per sample. For toughness, the highest throughput occurs at a batch size of 20, where it
takes less than 0.2 s to stretch a sample to € = 0.05. Relative to the sequential setting, our batching mechanism yields a 30x
boost in throughput for Young’s modulus and more than 3x for toughness regardless of the strain limit.

3.2 System Identificaton

System identification finds the optimal parameter setting of the simulator to match simulation results with physical measurements
(Supplementary Fig. 8). We first define some mathematical notations before providing a formal description of the problem. For
any microstructure x, let f(x,0) : X x P — R denote the virtual tester for Young’s modulus with a parameter setting 6, where
X C {0,1}29%20 g the design space of microstructures and P C R” is the feasible set of 8. The estimated Young’s modulus of x
is directly obtained from £ = f(x,0). Similarly, let g(x,n) : X x Q — C[0,0) denote the virtual tester for toughness with a
separate parameter setting 17, where Q C R!? is the feasible set of 17. The output g is not a single number but a stress-strain
curve 6(¢€) defined as a continuous function over non-negative strains. Thus, the toughness of x is estimated by computing the
following integral

T —1[6] = /:a(s)de. ©)

Both 6 and n are tuples of optimizable simulation parameters, including
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Supplementary Figure 7. Time consumption and throughput of the simulator under various input batch sizes. The column
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Supplementary Figure 8. Schematics of the system identification problem. Each virtual tester has a separate set of
optimizable parameters. &’ denotes error minimization via parameter optimization.

Reference Poisson’s ratios: Vg, Vyw, VIF;
b b

A system-wide damping coefficient: .

Reference Young’s moduli of base materials (denoted as TB and VW) and the interface material (denotes as IF):
Etp, Evw, ETF;

Failure thresholds of strain energy density: Wrg, Wyw, WiF;

Since fracture simulation is not involved in predicting Young’s modulus, we have

0 = (EtB, Evw, EF, VIB, VWW, VIF, ¥)
N = (Ets, Evw, Er, VB, Vww, ViF, Wi, Wyw, WiE, 7).

(M
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Based on optimizable parameters, the prediction errors of virtual testers were minimized over a group of microstructures

X, ={x;|i=1,2,--- N}, called the system identification dataset. The optimization process solved the following problems
N |E - Eil
0" — . Bt i
arggnm Z wi B
®)
|T; — Ti| + 21|6; — o]

n* = argmin Z wi ,
n i=1 Ti

where E;, T, 6; are the predicted Young’s modulus, toughness, and stress-strain curve of each microstructure x;; E;, T;, ; are the
corresponding physical measurements. For Young’s modulus, the objective is simply the average relative prediction error over
the dataset. For toughness, the objective combines errors in both toughness values and stress-strain curves. Since stress-strain
curves are functions, the error between two curves is calculated by integrating their absolute difference. Geometrically, this
represents the symmetric difference of the areas under the curves. The two error terms are balanced by a multiplier A=1.
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Supplementary Figure 9. a, An example of deriving the first sample weight component, wy, in system identification using
three data points. b, An example of deriving the second sample weight component, w, using five data points.

Additionally, as there are fewer optimizable parameters than microstructures in the dataset, we postulate that the simulation
model might have an insufficient capacity to capture the variation of experiment data. Thus, each microstructure x; is weighted
by w; € [0,1] to indicate priority. The weight is defined as the product of two components w; = wy;wy; that reflect two
intuitive principles. First, microstructures with better mechanical properties are prioritized for accuracy since Pareto-optimal
microstructures are our focus. To that end, the physical measurements y = (E,T) of microstructures in the dataset were
normalized into § = (E, T) in a unit square, and a piecewise-linear Pareto front was computed in the normalized performance
space. Then, the weight component w; of microstructure x; was derived from the Euclidean distance between y; and the Pareto
front, denoted by d;, via the following function (Supplementary Fig. 9a)

1 0<d<02
wi(d)=414-2d 02<d<06. ©9)
0.2 d>0.6

Second, to prevent any bias from an uneven sample distribution in the performance space, we introduce wy; as a penalty term for
excessively densely distributed microstructures. The distribution is estimated using a density heatmap p () over the normalized
performance space (Supplementary Fig. 9b). The density heatmap is derived from a Gaussian mixture model

N
=Y exp(—ya |15 —7I13) (10)

i=1
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where 7y, is a parameter that controls the spread of each Gaussian function. Quantitatively, p(¥) estimates the number of
microstructures in the vicinity of any position ¥, and variates smoothly between adjacent samples. Then, w»; is defined as a
weight discount for every sample x; whose density value exceeds a certain threshold, py.

o . Po
wa (F) mm{p(y),l} (11)
In this study, we found y,; = 200 and py = 2 to be a desirable parameter setting. Noteworthy, the design principles of sample
weights generalize to other problem domains. Proper modifications can be made when our approach is repurposed to other
computational design problems.

We used batched Bayesian Optimization (BO) as the optimizer for both 8 and 1. The BO algorithm outputs the best solution
after 200 iterations with 3 evaluations per iteration, hence performing 600N simulations at most. The manually specified
feasible ranges of simulation parameters are listed in Supplementary Table A1 and A2. The algorithm was repeated with five
different random seeds and the solution that had the smallest loss value was chosen. To harness the high throughput of the
simulator, we implemented the algorithm using the GPyOpt library'? and batched all 3N simulations in a BO iteration into a
single simulator run.

Sample E (GPa) Err. T (MPa) Err.
P Exp. Sim. (%) Exp. Sim. (%)

TB 1.0094e-3  1.0091e-3  0.031 | 5.4335e-2 5.4271e-2 0.118
\AV 2.6613 2.6613 0.0002 | 7.4217e-2  7.4484e-2  0.360
IF 0.5642 0.5642 0.003 0.8274 0.8193 0.984

Supplementary Table 2. Simulation predictions (Sim.) and relative errors (Err.) from physical measurements (Exp.) after
system identification on each base material separately.

Rel. error: E (%) Rel. error: T (%)
Round N Reference After Reference After
Avg. Max. Avg. Max. Avg. Max. Avg. Max.

18 | 31.09 93.15 6.53 2295 | 13559 767.44 22.85 6223
26 | 25.19 93.15 6.29 2040 | 10826 767.44 23.92 100.53
34| 21.11 93.15 632 2275 | 93.09 767.44 24.68 84.30
42 | 1895 93.15 6.50 2540 | 8238 767.44 27.10 88.87

ESNELOV RN O Y

Supplementary Table 3. Simulation errors from the reference model (in Round 0) and the updated model after system
identification in each outer loop round since Round 1. N denotes the number of microstructures in the system identification
dataset. Different from Fig. 3f, the error in each round is computed using microstructures in the dataset only.

In Round 0, we fitted the simulation to the base materials using system identification, obtaining a reference simulation
model. It achieved almost perfect accuracy, where Young’s modulus predictions are within 0.1% off from measurements
and toughness prediction errors are below 1% (Supplementary Table 2). However, after the system identification in each
round, the updated model had much smaller errors in predicting the performance of microstructures than the reference model
(Supplementary Table 3). From a theoretical perspective, a possible explanation is that the localized mechanical performance of
base materials might differ from bulk properties due to the microstructured placement. Thus, modeling the base materials in
microstructures using physical measurements on bulk specimens could result in larger simulation errors.

For complete reference, Supplementary Table A3 and A4 list the physical measurements, simulation predictions, and
relative errors of all microstructures discovered by our computational approach in every round of the outer loop.

3.3 NMO - the Inner Loop

Microstructures with optimal trade-offs between simulated Young’s modulus and toughness were explored following the
system identification step. Here, a multi-objective optimization (MOO) problem was solved in the microstructure design space.
As pixel-wise material assignments are discrete variables, the MOO problem can be tackled using genetic algorithms like
NSGA-II'3. However, a naive NSGA-II implementation often suffers from low sample efficiency attributed to uninformative
random mutations and crossovers. Alternatively, topology optimization (TO) methods'+!'7 formulate the MOO problem
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as continuous optimization where the base material properties of finite elements are parameterized by continuous material
assignment variables. While the continuous formulation allows for gradient derivation with respect to material assignments, TO
algorithms are prone to local optima and do not easily scale up to multiple objectives. Particularly, if a full Pareto front is desired
rather than a single Pareto-optimal solution, TO has to harness many starting points and weighted combinations of objectives to
properly explore the design space. Another potential option is multi-objective Bayesian optimization (MOBO) which performs
a more guided exploration of the design space!®2? than NSGA-II. Most MOBO algorithms leverage Gaussian-process-based
(GP-based) surrogate models that make fast and approximative performance predictions, thus greatly reducing the number
of simulation required. However, the surrogate models are heavily constrained by the Gaussian prior and can struggle in
approximating sophisticated discrete mappings. Furthermore, since the computational cost of fitting Gaussian processes is
cubic to the number of data points, the dataset is often limited to a few hundred in practice, which is far from adequate to model
the complex relationship between microstructure pattern and toughness.

Inspired by MOBO, we developed a neural network-accelerated multi-objective optimization algorithm (NMO) that is
specially tailored to the design space of microstructure patterns, harnessing the impressive capabilities of deep learning. The
NMO workflow is illustrated in Fig. 2a. In the beginning, a set of 10 microstructures were randomly sampled from the design
space and simulated to obtain their performance, constituting an initial dataset. In every iteration, the dataset was used to train
the predictor, which acts as a surrogate model for the simulator. Ten predicted Pareto-optimal samples were then computed
by solving a surrogate multi-objective optimization problem where simulation was replaced by the surrogate model. As the
surrogate model is much cheaper to evaluate, we applied NSGA-II to solve the surrogate problem, which ran for 200 generations
at a population size of 100. Then, the predicted best microstructures were verified in simulation before added to the dataset for
the next iteration. The algorithm lasted for 500 iterations as dictated by a pre-specified budget of 5,000 simulations. Due to its
iterative nature, NMO transforms into the inner loop of our pipeline, where simulation data and proposed designs alternately
flow between the simulator and the predictor.
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Supplementary Figure 10. CNN architectures used in the predictor. a, Definitions of the architectural units of CNNs. b,
Prediction networks of Young’s modulus and toughness constructed from an architecture template.

NMO has several major improvements over MOBO. Most importantly, the surrogate model is based on convolutional
neural networks (CNN), which specializes in image-based reasoning, instead of Gaussian processes. We model toughness and
Young’s modulus using two separate residual networks>'. Both networks were constructed from the same architecture template
demonstrated in Supplementary Fig. 10. The template is a concatenation of one stem convolution layer, one or more residual
blocks, a global average pooling layer, an optional dropout layer, and a fully connected layer. The network for toughness
has a relatively larger capacity, with 5 residual blocks and a penultimate dropout layer for regularization. The network for
Young’s modulus is much smaller, with only 2 residual blocks. The networks were progressively trained on the dataset of
microstructures discovered by the algorithm, where an Adam optimizer>> was used at a learning rate of le-3. The network for
toughness underwent 300 training epochs whereas the network for Young’s modulus went through 100 epochs. The maximum
batch size was 2,048. To alleviate overfitting on small datasets, the networks were penalized by weight decay coefficients of
le-2 and 1e-6, respectively.

The next improvement is a customized mutation operator in NSGA-II specially designed for microstructure patterns.
Normally, NSGA-II strikes a balance between exploitation and exploration of the design space using a mutation operator and a
crossover operator. In our case, we omitted the crossover step but augmented the mutation operator to enforce exploration. The
customized mutation operator carried out one of the following options probabilistically.

* With p; = 0.86, flip a random pixel;
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e With p, = 0.11, rewrite a rasterized line of pixels with a unified random value of 0 or 1, where the starting and ending
positions are randomly chosen;

e With p3 = 0.03, select a random pixel as the top-left corner, then rewrite a square region of pixels (the size of the square
is randomly designated) with the complement of the top-left pixel.

After that, symmetry was restored by mirroring the changes across the entire pattern. Note that the mutated pattern might
violate the structural constraints on the design space. Thus, potential violations were resolved through the procedure below

1. If the resulting ¢ falls below 0.5 after mutation, the pattern is flipped and the four corner pixels are reassigned with the
stiff material.

2. If other violation still exists, the operator continues applying new mutation attempts without undoing any changes until
the violation is cleared.

Our implementation of the mutation operator takes into account that the toughness of a microstructure is directly affected by
structural features in the pattern, such as pixels, beams, and chunks of the soft material. It balances between exploitation and
exploration by modifying these structural features at multiple scales probabilistically.

The last improvement is a deduplication mechanism using hash tables. It prevents the algorithm from rediscovering previous
samples in later iterations and allows the algorithm to escape local optima during exploration. Normally, single-pixel mutations
create limited variation and easily result in duplicate patterns. With a hash table, however, the mutation operator automatically
switches to larger perturbations once the hash table entries of neighboring patterns are filled. The exploration then continues in
other regions of the design space. In our definition, the hash value of a microstructure pattern (viewed as a flattened array of
binaries x = (by,b2,- -+ ,baop)) was computed as

400
hash(x) = (Z b,~ki1> mod m (12)
i=1

where k = 99,997 and m = 100,000,007 are prime numbers. Each hash table had m entries. NMO had a global hash table,
while each run of the surrogate problem solver used a separate table. After the modified NSGA-II algorithm finished, the
predicted Pareto-optimal microstructures were ordered by non-dominated sorting and checked for hash collision inside the
global hash table. The first 10 collision-free samples were validated by the simulator.

The exploration efficiency of NMO was evaluated using Pareto hypervolume growth within a budget of 5,000 simulations.
Our modified NSGA-II algorithm was also evaluated. Compared with NMO, it still benefits from the custom mutation operator
and the hash table albeit not having any surrogate model. For reference, we included a baseline NSGA-II implementation that
performs single-pixel mutations and one-point crossovers at a rate of 0.1 and 0.8, respectively. Any crossover or mutation
attempt that violated design constraints was reverted before trying the next one. Hence, the NSGA-II baseline is generally more
conservative in exploration.

For TO, we chose bidirectional evolutionary structure optimization (BESO and solid isotropic material with penalization
(SIMP)! as representatives since previous works have tackled tough composite design using both strategies’>>°. Considering
that they only optimize a single objective by definition, we extended them to finding the Pareto front by randomly sampling
many weighted combinations of normalized Young’s modulus and toughness as meta-objectives. To enforce exploration, we
run BESO using multiple random initial solutions and set multiple random target volume fractions for SIMP. This way, both
algorithms balance exploitation and exploration without leveraging any expert knowledge of Young’s modulus or toughness,
making a fair comparison with our method. Implementation-wise, we augmented the FEM simulator to support gradient
calculation through auto-differentiation?’. We adopted the extended BESO method from?® and solved SIMP using method
of moving asymptotes (MMA). For MOBO algorithms, we evaluated DGEMO?° and TSEMO' as baselines. DGEMO has
state-of-the-art performance in several synthetic MOO benchmarks, while TSEMO is more commonly adopted.

Here, we additionally introduce the detailed optimization setting for TO-SIMP, where the MMA solver maximizes a
weighted combination of normalized Young’s modulus and toughness. An active constraint is imposed on the volume fraction
of the rigid base material (¢). Below we provide the optimization statement in mathematical notations. Let p € [0, 1]20%20
denote the density field of a microstructure unit. SIMP defines the element-wise Young’s modulus E, as

)23,24

Ee(pe) = pé)Erigid + (1 - pé))Esoft

where p, refer to the density of the element e; p denotes the SIMP penalization exponent; Eyigig and Eof represent the Young’s
moduli of rigid and soft base materials. Let £(p) be the normalized Young’s modulus given by the Young’s modulus simulator,
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T (p) be the normalized toughness given by the toughness simulator. The following problem is solved using MMA:

max wiE(p) +w2T ()

s.t. / PdQ < Pmax
Q
p obeys p4m symmetry

Since the optimizer only converges to one microstructure design at a time, we repeat this process using randomly sampled wy,
wa, and @max to explore the design space in different directions. We use a constant SIMP penalization p = 8 in all cases without
continuation.

Regarding the evaluation methodology, ten microstructures were simulated per iteration for all algorithms except TO which
does not break down to generations. NMO and NSGA-II were run for 500 iterations. MOBO algorithms were capped by 200
iterations for an acceptable time consumption as fitting Gaussian processes became extremely slow with hundreds of samples.
For TO algorithms, we paired random meta-objectives and initial designs (or target volume fractions) into optimization tasks
and allowed the algorithm to execute as many optimization tasks as possible before exhausting the evaluation budget. All
algorithms were repeated on the same five random seeds, which led to identical starting samples. The resulting curves of Pareto
hypervolume growth were averaged.
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Supplementary Figure 11. Pareto hypervolume growth of the gamut under NMO, NSGA-1II, TO, and MOBO algorithms in
Round 0. Solid curves are averages. Colored regions indicate standard deviations.

Round Pareto hypervolume Improv. v #Samples till Vigoer  Improv.
NSGA-II  Ours (%) weet | NSGA-II  Ours (x)
0 1.6154 1.8412 13.98 1.7202 20000 2200 9.10
1 1.6012 1.8835 17.63 1.8225 20000 4190 478
2 0.9956 1.0904 9.52 1.0776 19760 3240 6.10
3 1.0406 1.2016 15.47 1.0911 19950 1830 10.90
4 0.9457 1.0078 6.57 1.0078 17140 4990 3.44

Supplementary Table 4. Comparison in exploration efficiency between NMO and our modified NSGA-II in each outer
loop round. Exploration efficiency is measured by: (1) the discovered Pareto hypervolume within 5,000 simulations (unit:
10 N?m~#); (2) the number of simulated samples before reaching a target Pareto hypervolume, denoted by Wiarget- Viarget 18
equal to the Pareto hypervolume of NSGA-II at 20,000 simulations by default. If NMO does not reach that hypervolume within
5,000 simulations, we change Viuger into NMO’s hypervolume at 5,000 simulations instead.

Supplementary Fig. 11 demonstrates the Pareto hypervolume growth of evaluated algorithms in Round 0. NMO secured
victory with the fastest growth and the largest final hypervolume. The modified NSGA-II algorithm also pulled ahead of
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baseline NSGA-II considerably in hypervolume growth. In contrast, the TO variants failed to cover a decent Pareto hypervolume
despite completing dozens of optimization tasks. They not only suffered from local optima but had to consume a majority
of the budget on intermediate solutions along optimization trajectories, which crippled their sample efficiency. Both MOBO
algorithms severely underperformed as well due to aforementioned weaknesses of Gaussian processes. Furthermore, even
when compared against our modified NSGA-II, NMO took up to an order of magnitude fewer simulations to reach the same
Pareto hypervolume (Supplementary Table 4). These results showcase NMO’s evidently superior sample efficiency over other
state-of-the-art structural optimization or generic MOO algorithms. In addition, we would like to note that NMO is compatible
with any MOO algorithm when solving the surrogate problem. It is recommended to choose an algorithm that adequately fits
the design task for ideal exploration efficiency in practice.
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Supplementary Figure 12. The impact of network regularization on Pareto hypervolume (unit: 10'> N?m~%) growth of the
NMO algorithm in all outer loop rounds. "Ours" means our hyperparameter setting including a large weight decay of le-2 plus
a penultimate dropout layer.

By tuning the CNNs’ hyperparameters, we noticed that network regularization plays an important role in accelerating
hypervolume growth. In this experiment, our CNNs were compared against two less regularized variants, one using a smaller
weight decay (le-6) and the other excluding dropout before the fully-connected layer. As shown in Supplementary Fig. 12, our
networks outperformed less regularized versions and led to better hypervolume growth in most test cases. While the no-dropout
variant had negligible wins in Round 2 and 4, the small-weight-decay variant kept trailing behind. Considering the relatively
small amount of training data, a reasonable explanation is that regularization prevents the networks from overfitting and
improves generalization to unseen samples. Thus, properly regularized networks can be better at discovering high-performing
samples in simulation.

As an additional test, we evaluated the prediction accuracy of CNNs on training datasets in the last iteration of NMO
(Supplementary Fig. 13). The network for Young’s modulus achieved very high accuracy with an average relative error of less
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Supplementary Figure 13. CNN prediction accuracy in the last iteration of NMO, evaluated in Round 0 and Round 4 with
arandom seed of 0. Simulation results are regarded as the ground truth. r means correlation coefficient.

than 2%. The network for toughness had larger errors in comparison, at 16.7% and 13.6%, respectively. Nonetheless, perfect
accuracy is unnecessary in this case since the microstructures for simulation validation in the modified NSGA-II were selected
by Pareto dominance rather than performance values. Therefore, it is sufficient to predict correct property rankings, which is
indicated by the correlation coefficient (r) between predictions and the ground truth. Here, our network for toughness managed
to get r > 0.97 and demonstrated much faster hypervolume growth than other evolutionary algorithms. As a side note, searching
for the best network architecture or hyperparameter setting is beyond the scope of this work and thereby left for future research.

3.4 Selection of Validation Samples

The simulated gamut discovered by NMO typically contains a large pool of microstructures and a few samples are selected for
physical validation due to a limited experiment budget. Overall, the selected samples should cover a wide performance range
and maximally distinguish from existing samples in appearance. To fulfill these requirements, we propose a two-stage selection
approach visualized in Supplementary Fig. 14.

The first stage extracted samples closest to the gamut boundary. This step can be done in various ways depending on the
shape of the gamut. We employed a simple method where samples in the gamut were ranked in the order of Pareto dominance.
By definition, Pareto-optimal samples of the entire gamut are in the 1st rank, and the i-th rank contains microstructures on the
Pareto front of a partial gamut where those in higher ranks are removed. We regarded samples up to the 3rd rank as near the
boundary. Meanwhile, the gamut was intersected by two benchmark lines /; and /5. /1 is a polyline that connects the physical
measurements of homogeneous composites. / is a horizontal line going through the sample with the largest Young’s modulus in
simulation. Samples that were both near the boundary and above the benchmark lines were deemed as candidates for selection.

In the next stage, the candidate samples, S C X, were classified into two groups of radial bins By, B»,---,B; and
Br+1,Br+2, -+ ,By. M denotes the total number of samples to select, and L denotes the number of samples to select from the
first group and that 0 < L < M. To that end, we mapped the properties of samples in S to a normalized performance space in
[—1,1] x [0, 1]. While both Young’s modulus and toughness went through linear mappings, there are two circumstances for
Young’s modulus specifically. As shown in Supplementary Fig. 14, the Young’s modulus of the toughest sample £, » 1S mapped
to zero by default. However, the resulting image will not fit into [—1, 1] if E",op exceeds the midpoint of the Young’s modulus
range, hence the midpoint is mapped to zero in that case. Within the normalized performance space, the radial bins are outlined
by M + 1 rays shooting from the origin, dubbed as ry,r,--- ,ry+1. r+1 and ry1 always align with the coordinate axes
regardless of L. If L > 0, r| passes through the sample in S that has the largest orientation angle from the positive horizontal
axis, @pqy. The i-th radial bin B; refers to the area between r; and r;; 1, and we let S; denote the subset of S classified into B;.
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Supplementary Figure 14. The selection process of validation microstructures near the Pareto front. M =5 and L = 1 are
used in this illustration for simplicity.

Bi,B,,--- By are equally-sized and located in the second quadrant, while the other bins are equally-sized and located in the
first quadrant. The value of L is determined by ¢, using the rules below

T
0 Omax < 5 + (7

L= n n .
1- M max Z ~ h
K 2<Pmax> W Prax 2 5 T

where ¢, = /36 (i.e., 5°). Practically, when @, is at least 95°, L is a minimum number such that the bins in the second
quadrant are no larger than those in the first quadrant.

Afterwards, the following combinatorial optimization problem was solved to search for a group of microstructure patterns
that maximally differentiate from physically measured ones. Let R denote the set of microstructures that have been discovered
by the computational pipeline, and Q = (x1,xp,--- ,xp) (Where x; € S; for i = 1,2,--- ,M) denote a possible selection. The
objective is to maximize the average L1-distance of each x; to the rest of the samples in RU Q.

13)

M

1
QF = argmax — m
g Y n

- ol 14
Q M 1UER KIEI\I{x,-}HXZ MHI (14)

i=

As the problem is likely intractable by enumeration when S contains over 100 samples, we used a beam search algorithm to find
an approximate solution. The beam size was set to 100 to preserve the quality of the solution at an acceptable computational
cost.

3.5 The Outer Loop

The outer loop was held between the mechanical tester and the simulator as follows. In Round 0, the mechanical tester
conducted physical measurements on the base materials (the rigid, soft, plus the interface material). Our system then matched
simulation and experiment using a system identification. Each material was involved in a separate system identification process
that only optimized simulation parameters pertaining to that material, including Young’s modulus, Poisson’s ratio, energy
density threshold, and damping coefficient. This yielded three optimized values of the damping coefficient where the median
was chosen. Using the calibrated simulator, our system ran the inner loop to find microstructures with the optimal trade-offs
between Young’s modulus and toughness in simulation. As previously noted, we used the modified NSGA-II algorithm to
compute the simulation Pareto front, and left the NMO algorithm to a separate comparison with other optimization algorithms.
The NSGA-II was run in five different random seeds under a simulation budget of 2x 10* samples. The resulting gamuts were
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Supplementary Table 5. Random microstructure designs in the system identification dataset categorized by ¢.
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Supplementary Figure 15. Microstructures discovered by the computational pipeline. The first row comprises 10 random
patterns in the system identification dataset. The following rows are patterns proposed in outer loop rounds.

merged into one gamut with approximately 10° samples, after which 8 validation microstructures were selected near the Pareto
front and transferred back to the mechanical tester for validation.

Starting from Round 1, our system maintained a dataset of physically measured microstructures, starting from 18 initial
designs. Besides the proposed designs from Round 0, the dataset also had 10 random microstructures drawn from stratified
sampling according to ¢ (Supplementary Table 5). Microstructure patterns in each interval of ¢ were generated by randomly
specifying a ¢ value and filling an zero matrix with a corresponding number of 1’s. These random microstructures help
regularize system identification especially in early rounds of the outer loop when the dataset is small. As shown in Fig. 3b,
the mechanical tester provided the simulator with physical measurements of all microstructures in the dataset to improve its
accuracy through system identification. Different from Round 0, system identification was conducted using experiment data
from microstructures exclusively. After that, the simulator computed its gamut and proposed 8 Pareto-optimal designs back to
the mechanical tester for validation. The proposed designs were then added to the microstructure dataset. Thus, the system
identification dataset had 8z + 18 microstructures at the end of Round n (n > 0). The outer loop stopped at n = 4.
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Properties Improvement Improv.
Sample ¢ (homogeneous) (base)
E (GPa) T (MPa) | E (%) T (x) T (x)
1 0.79 1.402 0.491 1.35 2.00 7.01
2 0.85 1.810 0.473 1.61 2.76 6.75
3 0.85 1.764 0.458 1.54 2.48 6.53
4 0.84 1.790 0.355 1.27 1.76 5.07
5 0.85 1.807 0.304 1.28 1.59 4.33

Supplementary Table 6. Performance of five best microstructures discovered by our approach and their improvements
relative to homogeneous composites and base materials. For homogeneous composites, the improvement in one property is
calculated assuming that the other property is identical. The largest improvement factors are marked in bold.

Microstructured composites discovered during the outer loop (Supplementary Fig. 15) were compared against homogeneous
composites. Among the microstructures that showed better performance trade-offs than homogeneous counterparts, we
picked five best samples near the Pareto front and with more than 1.5 x improvement in toughness from the benchmark line
(Supplementary Table 6). Sample 2 has the maximum improvement in both Young’s modulus and toughness at 1.61x and
2.76 %, respectively. Samples 1 and 3 also show more than 2 x improvement in toughness. These results sufficiently prove that
computationally designed microstructured composites present much better trade-offs between Young’s modulus and toughness
than homogeneous composites. We also calculated the improvement of the best samples over base materials in toughness (VW+
has a higher toughness of 0.070 MPa than TB+), where Sample 1 has 7.01 x higher toughness than VW+.

4 Analysis on Pareto-Optimal Microstructures

4.1 Discovery of Microstructure Families

Microstructure families were discovered from microstructures with near-optimal trade-offs between Young’s modulus and
toughness after the nested-loop pipeline. Here, we grouped 11 near Pareto-optimal microstructures into 4 families by patterns
and mechanical performance (Fig. 4b). They were referred to as seed microstructures and leveraged to generate pattern
variations in each family. Then, we validated the discovered families by confirming that the generated microstructures had
similar performance to seed microstructures. The procedure is detailed as follows.

Rel. error: E (%) Rel. error: T (%)
Family N R4 FS R4 FS
Avg. Max. Avg. Max. | Avg. Max. Avg. Max.

10.77 1998 6.25 1256 | 40.17 4825 4.55  8.28
299 545 122 345 | 41.61 56.81 11.32 21.29
769 964 213 422 | 4742 6299 269 535
396 576 216 429 | 33.03 4364 045 0.73

BN =
DN AW

Supplementary Table 7. Prediction errors of the simulator in Round 4 (R4) and family-specific simulators (FS) in the
performance of seed microstructures in each family. N denotes the number of samples. Better values are marked in bold.
Physical measurements and corresponding predictions are provided in Supplementary Table A6 and A7.

To start with, we ran system identification in each family to obtain a family-specific simulator. The system identification
involved all near Pareto-optimal samples but assigned them with different weights. Samples in the family had a constant weight
of 1, while others were weighted by 0.1 for regularization purposes. Such family-specific system identification leads to a
better fitting quality within the family, as illustrated in Supplementary Table 7. Since only seed microstructures and other
Pareto-optimal microstructures are used, there is a closer match between simulation predictions and physical measurements
than the simulator in Round 4. The contrast in prediction error is particularly obvious in toughness predictions where the
family-specific (FS) simulator have an order of magnitude smaller relative errors in three families.

To generate variations in microstructure pattern, we performed dense evolutionary sampling around the seed microstruc-
tures. Similar to NSGA-II, the sampling algorithm began with the seed microstructures in the family, and generated other
microstructures iteratively using our modified mutation operator. However, there was no tournament selection of parents or
competition among the population, and any mutation attempt was simply rejected if it led to violation of design constraints.
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Supplementary Figure 16. Gamut of each microstructure family after dense sampling along with selected samples near the
Pareto front for validation. Each family contains around 7,000 to 9,000 samples. "Exp.” is short for physical measurements and
’sim.” for simulation predictions. The measurements and predictions of a seed microstructure are connected to indicate error.

In every iteration, the algorithm kept generating mutated microstructures until 10 non-existing ones were found, after which
they were evaluated using the family-specific simulator. The mutated microstructures were restricted within a maximum of
16-pixel difference in pattern (which is 4% of all pixels) from the closest seed microstructure. The hash table in Section 3.3
was adopted for deduplication. As the hash table entries were rapidly filled, it became increasingly difficult to generate new
microstructures over time. Thus, the algorithm was limited by a maximum number of 3 x 10° proposed microstructures per
iteration, and terminated if it failed to complete an iteration within the limit. Our algorithm generated local gamuts for all four
families as shown in Supplementary Fig. 16.

Finally, we conducted physical measurements on three microstructures in the local gamut with near-Pareto-optimal predicted
performance. The samples were selected using the algorithm in Section 3.4 (Supplementary Fig. 16). Their experiment results
revealed comparable performance to the seed microstructures (Supplementary Table AS), hence verifying that the performance
similarity among microstructures in the same family was preserved after dense sampling.

4.2 Dimensionality Reduction in Subfamilies

For more in-depth analysis, each microstructure family was divided into subfamilies according to similarity with seed
microstructures, where a subfamily consists of a seed microstructures and others within a 16-pixel radius as specified in dense
sampling. We ran Isomap to reduce 400D microstructure patterns into 2D embedding spaces (with a neighborhood size of 10)
in each subfamily, shown in Supplementary Fig. 17. Microstructure properties are color-coded in the figures. A higher intensity
of the red channel indicates better toughness, whereas the blue channel represents Young’s modulus. Our dense sampling
algorithm was able to create a diversity of variants from the seed microstructures. New shape features can be seen in these
variants, such as individual pixels, beams, arcs, and small chunks of soft material.

Regarding the distance metric for Isomap, we used the earth mover’s distance (EMD) rather than the Euclidean distance.
EMD, or the 1st Wasserstein distance®’, is a metric between probability distributions originally defined in optimal transportation
theory°. It intuitively measures the minimal work (defined as mass times distance) required to redistribute a pile of earth into
another. Compared with the Euclidean distance, EMD better reflects the shape difference between microstructure patterns
by taking into account both pixel values and locations. Since the original definition of EMD is not directly compatible with
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Supplementary Figure 17. Isomap embedding spaces of four subfamilies annotated with example patterns. Each

subfamily contains around 2,000 to 3,000 microstructures and a few of them are visualized. Mechanical performance is
encoded in colors (E: the blue channel; 7': the red channel). Seed patterns are highlighted by orange boxes.
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Supplementary Figure 18. Calculation of the earth mover’s distance (EMD) between two microstructure patterns.
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microstructure patterns, we converted the patterns into quarter-sized normalized histograms that represent discrete probability
distributions. The conversion rules, illustrated in Supplementary Fig. 18, treated pixels of the soft material as shape features
and assgined non-zero values to the corresponding cells of the output histogram. Conversely, the other cells associated with
the rigid material were set to zero. Therefore, the EMD between two microstructures x, and x;, is calculated using the 1st
Wasserstein distance between their normalized histograms h, and hy, (hg, hp € [0,1] 100y,

EMD (x4,%5) = Wi (ha, )

= min 7TRD,
n€l(ha,hy)

15)
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where I1(h,,hy) is the collection of transportation plans, 7, from %, to h;, given by
M(hy,hp) = {w e R0 7> 0, 711 =hy, and a1 =hy, } . (16)

In the earth-moving analogy, 7 tabulates the amount of earth to transfer from each cell to another. D is the pairwise Euclidean
distance matrix of histogram cells. A® B = (A, B)r = tr(ATB) is the Frobenius inner product of two identically shaped matrices.

Source Pattern decomposition N_ormallzed
patterns histograms
Distinctive
- HoH s T |
B ﬁ ‘a - g Interpolated Interpolated
e > ® histogram pattern
A W " oa s "
ala Shared = O Wasserstein T —
g - | barycenter I Convert back -
. = - = . (equal weights) — to pattern ":'. .':__
WD — EIE 4 o > HH b o
- - - - Quantization N T Add shared
S - = - pattern - “a" -
S, T T
. N L [ [ T
ir ﬁ 't 1 1 :#
an -- 1
Emu [

Supplementary Figure 19. Interpolation of neighboring microstructure patterns in an Isomap embedding space based on
Wasserstein barycenters.

H B
clI: eEn
- a. -
Il cEI EED
- e T -
IIIE:E'II I.I IEI FEJ' IEI
13k S GERE I E 1@ R

Supplementary Figure 20. Examples of interpolation between three microstructures in the same subfamily.

The Isomap embedding space of a subfamily can be further refined by samples not covered in dense sampling. To generate
these samples, we built an interpolation model for K neighboring microstructure patterns x,xz,- - - ,xx in the embedding space
based on Wasserstein barycenters>', which is widely used in shape interpolation®>. The interpolation algorithm is illustrated in
Supplementary Fig. 19. Each source pattern was decomposed into a common part containing shared shape features and an
exclusive part containing distinctive features. The exclusive parts were converted into quarter-sized normalized histograms

denoted by hy,h,--- ,hg. Our model interpolated among the histograms by computing their Wasserstein barycenter / under
the weight assignment wy,wy,--- ,wg, defined as
_ K
h = argmin Y w;Wa(hi, h). (17)
b=l

W (-, -) refers to the 2nd Wasserstein distance,

WZ(haahb) :ﬂel!IIE}lnhb)n®D2’ (18)
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Supplementary Figure 21. Isomap embedding spaces of three subfamilies before and after refinement using interpolation.
Microstructure properties are encoded in colors.

where Dy = Do D is the pairwise squared distance matrix (o refers to the Hadamard product). The minimization problem was
tackled by solving the following equivalent linear programming problem?! for the optimal transportation plans ©; from each A;
toh(i=1,2,--- ,K).
min w; (; ®D2)
{mi
st. >0, Vi=1,2,--- K (19)
ml="h, Vi=12,-- K
afl=nl1, Vi=23,---.K

After that, i was obtained by & = (nf)T 1. To convert the interpolated histogram back to a microstructure pattern, 7 was
quantized into a binary matrix that indicates the material assignments of the upper-left quarter of the resulting pattern. Let ¢; be
the unified value of all non-zero cells in 4; and ¢ = (2{(:1 c,-) /K. A cell in h translated into the soft material if no less than ¢,
and the rigid material otherwise. Examples of microstructure pattern interpolation are shown in Supplementary Fig. 20.

In practice, a Delaunay triangulation was computed in the 2D embedding space to determine neighboring microstructures,
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Family | 1 | 2 | 3 | 4 |
Total

Subfamily | 1 2 31 2 3 4 | 1 2 | 1 |
Before | 3,251 2959 3313 | 1,862 1861 1917 1859 | 1,860 1,862 | 1,997 1,915 | 24,656
After | 3,328 3,164 3371 | 1,939 1904 2,054 1903 | 1,988 1964 | 2,112 2,044 | 25,771
Inc. (%) | 237 697 175 | 414 231 715 237 | 688 548 | 576 674 | 452

Supplementary Table 8. Increases in the size of subfamilies from interpolation.

namely K = 3. The neighborhoods whose longest edge was between 4% and 40% of the diameter of the family (i.e., the
distance between two furthest points in the embedding space) were marked as candidates. New microstructures were then
generated from uniform grid interpolation in the candidate neighborhoods, and added to the subfamily if they were within a
16-pixel radius from the seed microstructure and did not violate any structural constraint. Finally, the refined embedding space
was recomputed using Isomap. Our interpolation algorithm generated about 5% more samples in each subfamily on average
(Supplementary Table 8). In Supplementary Fig. 21, we make a side-by-side comparison between the Isomap embedding
spaces before and after interpolation.

4.3 Toughening Mechanisms
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Supplementary Figure 22. Major shape features (a) and toughening mechanisms (b, ¢) of microstructures in Family 1.
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Supplementary Figure 23. Major shape features (a) and toughening mechanisms (b, ¢) of microstructures in Family 2.
Intrinsic toughening mechanisms of each microstructure family were analyzed from video recordings of validations samples

during mechanical testing and simulation. We summarize the most representative mechanisms of each family and associate
them with shape features in microstructure patterns as follows.
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Family 1 maintains a relatively high fraction of soft pixels in the shape of bars or chunks as exemplified in Supplementary
Fig. 22a. This family is located on the left side of the performance gamut where Young’s modulus is relatively small. To
maintain a proper strength, the continuous areas of rigid material form horizontal and vertical grids (stiff grids in Supplementary
Fig. 22a). A distinctive feature appearing in this family is parallel bars of soft material. Their benefits are twofold. When
perpendicular to the pulling direction, they introduce additional stress resistance through elastic deformation. Alternatively,
when parallel to the pulling direction, or directly facing crack propagation, they effectively absorb energy and slow down the
propagation. Bridging and deflection effects are the most prominent toughening mechanisms (Supplementary Fig. 22b and 22c¢).
A zig-zag crack path is observed during fracture which results in high toughness. The propagation energy accumulates under
the trapping effect of soft material and dissipates via branched cracks®?

Different from Family 1, Family 2 concentrates soft pixels in a cross-like band in the center of the unit (Supplementary
Fig. 23a). Microstructures withstand a larger strain via the elastic deformation of soft material chunks, as indicated by the red
square in Supplementary Fig. 23b. It is noteworthy that such deformation is accurately reflected in simulation. Stiff grids are
also present as a means of improving Young’s modulus. Bridging, deflection, and branching (Supplementary Fig. 23b and 23c)
are essential anti-cracking mechanisms in the family.
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Supplementary Figure 25. Major shape features (a) and toughening mechanisms (b, ¢) of microstructures in Family 4.

While soft pixels are more concentrated in the two families above, they are mostly dispersed in Family 3. Discrete soft pixels
form a quarter of a diamond-like structure at corners and another diamond structure in the center (Supplementary Fig. 24a).
Meanwhile, some soft pixels are located at edges and ahead of the notch tip. These pixels are typically on the path of crack
propagation and act as an energy dissipation zone that delays crack propagation. Since the interface is stronger than the soft
material, the soft pixels work as defects that guide crack propagation. Such an deflection effect can increase the crack length
dramatically and dissipate much more energy. Additional soft pixels introduced during dense sampling not only enrich the
diversity of the family but also increase the overall stress resistance.

As for Family 4, the discrete soft pixels around corners roughly form a quarter of a circular outline (Supplementary
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Fig. 25a). Similar to Family 3, some soft pixels are placed on the edges, which retards crack propagation by dampening the
cracking velocity and dissipating energy through elastic deformation. Basic features like stiff grids are preserved to maintain
Young’s modulus. The same anti-cracking mechanisms, such as bridging, deflection, and branching, are observed in this
family (Supplementary Fig. 25b and 25c). As Family 3 and 4 bear some resemblance in structure, we observed that they
show comparable mechanical performance. Due to the dominance of rigid material at 0.8 < ¢ < 0.85, microstructures in both
families tend to have higher Young’s moduli but break at relatively smaller strains.

5 Case Study: Stiffness-Porosity Trade-off

With carefully designed geometries, porous structures enable strong materials with light weights. In many engineering
applications, it is desirable to design microstructures that are both stiff (large Young’s modulus) and lightweight (high porosity).
However, porosity and stiffness are often contradictory since materials with higher porosity are generally weaker due to less
materials supporting the external force. Due to its significant impact on engineering, the stiffness-porosity trade-off has been
extensively studied in the field of solid mechanics and topology optimization. In this section, we directly apply our optimization
pipeline to identify the Pareto front between stiffness and porosity for porous microstructure designs. We demonstrate that our
pipeline not only remains effective in Pareto front discovery but also has adequate scalability to efficiently explore even larger
combinatorial design spaces.

5.1 Problem setting

Design space. We consider single-material, periodic porous structures where each unit is characterized by a regular grid of
182 x 104 elements (Supplementary Fig. 26a). An element can be either void or filled with solid material. This constitutes
a much larger design space than the 20 x 20 patterns we considered for the strength-toughness trade-off. However, a valid
microstructure design must contain a single-connected solid phase to exhibit non-zero stiffness. Therefore, we adopt the
topology generation algorithm introduced in** to create valid random designs. Meanwhile, we focus on a porosity range from
0.1 to 0.75 to exclude impractical designs with excessive or insufficient material. To further ensure that the generated designs
are isotropic, we require all microstructure patterns to have p6m symmetry.

Fabrication and measurement. Test samples are fabricated on acrylic plates with a thickness of 1.6 mm (McMaster-Carr
8560K172). Microstructure patterns are carved onto the acrylic plate via laser cutting (Universal Laser Systems VLS6.75).
More specifically, the laser is programmed to cut along the interface between material and void to produce the designed porous
structure (Supplementary Fig. 26b). The dimensions of each unit cell are 15 mm in width and 26 mm in height, resulting in a
pixel size of 0.14 mm. Since the resolution of the laser cutter is below 0.05 mm, this fabrication method is sufficiently accurate.
Each sample consists of 3x5 unit cells, with a total size of 75 mm in width and 78 in height. In addition, two rectangular
gripping areas with a height of 50 mm each are concatenated to the microstructure.

We measure the effective Young’s modulus of a microstructure design on a tensile machine (Instron with 500N load cell,
see Supplementary Fig. 27a). The test sample is fixed onto the Instron using two pneumatic grippers (the pressure is 100
pound per square inches). During the tensile test, the Instron stretches each sample till 0.1 mm at a rate of | mm/minute.
The effective Young’s modulus of the sample is then calculated based on the slope of the measured force-displacement curve
and sample size. To prove that the boundary effect is negligible for a sample with 3 x5 unit cells, we measured the effective
Young’s modulus using samples of various sizes: 2x4, 2.5x4, and 3x5 units. According to Supplementary Fig. 27b, Young’s
modulus converges at our designated sample size, indicating that the 3x5 size already suffices to minimize the boundary
effect. Moreover, we measured several Young’s moduli of the same microstructure along multiple directions to verify its
isotropy. This is realized by fabricating samples with tilted microstructures. As shown in Supplementary Fig. 27c, the
microstructure design exhibits almost identical Young’s moduli in different directions. In all experiments, we measure each test
sample 4 times and report the average Young’s modulus and standard deviation. These measurements are guaranteed to be
consistent since the laser cutter has a sufficiently high resolution and the acrylic plates are relatively thin (3 mm). Nonetheless,
we made an extra effort to fabricate three samples for a fixed microstructure design, and the measured Young’s moduli dif-
fer by less than 1%. Therefore, to save time and energy, we only fabricate one sample per microstructure design in this case study.

Simulation. We developed an FEM simulator to calculate the homogenized Young’s modulus of a porous microstructure
specifically for this study. The FEM grid has identical dimensions to a microstructure unit (i.e., 180 x 104 elements). Since
stiffness calculation is a linear problem, we use linear elasticity to model the base material. The model is characterized by two
exposed parameters: Young’s modulus Epase and Poisson’s ratio Vp,ge 0f the base material. Each finite element is parameterized
by material density using a continuous variable between 0 and 1. A density equal to 1 represents the base material whereas a
zero density corresponds to void. Based on the homogenization theory, we computed the homogenized stiffness tensor of the
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Supplementary Figure 26. Application of our approach to discover porous microstructures with optimal stiffness-porosity
trade-offs. a, The porous microstructures consist of periodic unit cells defined on a 182 x 104 regular grid, where each element
represents either material or void. We enforce po6m symmetry on microstructure designs for isotropy. b, Sample photograph of
a manufactured porous microstructure. The sample is fabricated by laser-cutting a clear acrylic plate. ¢, Workflow of our
pipeline to discover the stiffness-porosity Pareto front.

microstructure using periodic boundary conditions, from which we derived homogenized Young’s moduli in multiple directions.
The minimal Young’s modulus was chosen as the objective for structural optimization to ensure material isotropy. Moreover,
we implemented gradient calculation and SIMP in the simulator to compare our pipeline against existing topology optimization
algorithms that utilize sensitivity information.

5.2 Results
In the initial round, the exposed parameters of the simulator, Epyge and Vyyge, were determined by the Young’s modulus and
Poisson’s ratio of an acrylic plate. Since the vendor only provides a flexural modulus of 2.76 GPa and leaves out the value of its

Poisson’s ratio, we made an initial guess of Epase = 2.76 GPa and Ve = 0.33.

We ran the inner loop of our pipeline (NMO) to find the Pareto front of the simulator, from which we selected 10 designs for
experimental verification (see the orange dashed line and markers in Supplementary Fig. 28). As expected, there is a noticeable
gap between the experimental Pareto front (blue) and the simulation Pareto front (orange), since the exact properties of the
base material are unknown. At the beginning of Round 1, our pipeline conducted system identification on discovered designs
by adjusting the values of Epase and Vp,ge. Next, we ran the inner loop (NMO) again and identified 10 additional designs on
the simulation Pareto front. After physically measuring their Young’s moduli, we noticed that the measurements were almost
identical to simulation predictions (see Round 1 in Supplementary Fig. 28). In contrast to the strength-toughness problem,
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Supplementary Figure 27. Experimental measurement of Young’s modulus. a, The sample is gripped by the Instron on
both ends outside the microstructure area. The Instron then stretches the sample by 0.1 mm at a rate of 1 mm/minute. The
effective Young’s modulus is derived from the slope of the measured force-displacement curve. b, Measured effective Young’s
moduli for samples comprising different numbers of units. The Young’s modulus barely varies as we increase the sample size,
indicating that the boundary effect of a 3 x 5 sample is sufficiently small. ¢, Measured effective Young’s moduli along different
directions, obtained from samples with rotated microstructures. Since the microstructure pattern obeys p6m symmetry, we only
need to rotate the microstructures by up to 30°. The results prove that the elastic response of the measured design is isotropic.

our pipeline is able to close the sim-to-real gap after merely one round. The reasons for the fast progress include: 1) stiffness
is a linear property; 2) the fabrication process of test samples is precise; 3) experimental behaviors of the samples are very
consistent; 4) the simulator only has two exposed parameters.

Hashin-Shtrikman upper bound. Once our pipeline finished, we verified that the discovered designs on the experimental
Pareto front are theoretically optimal solutions. In 1963, Hashin and Shtrikman derived the theoretical upper bound of the
Young’s modulus of an isotropic material under different porosities as>*3°,

Ens :Ebase(1_¢)/(1+2¢)a (20)

where Ep,ge 18 the Young’s modulus of the base material, ¢ is porosity, and Epyge gives the Hashin-Shrikman (HS) upper bound.
Therefore, for any porous material with porosity @, its isotropic Young’s modulus E < Eys(¢). Equation (20) defines the
theoretical upper bound for the Pareto front of Young’s modulus and porosity, providing a benchmark for structural optimization
algorithms. In Supplementary Fig. 28, we compare experimental and simulation results of Pareto-optimal designs discovered
by our pipeline with the HS upper bound (black line). We find that our results closely align with the theoretical upper bound.
This proves that our pipeline is able to find theoretically optimal solutions to the stiffness-porosity problem.

5.3 Sample efficiency

In this section, we compare NMO with modified NSGA-II and TO in sample efficiency when discovering the simulation
Pareto front. Here, the modified NSGA-II algorithm uses a carefully designed mutation operator. The mutation operator
probabilistically adds/removes a group of randomly selected boundary pixels, adds/removes ellipses with random shapes
and orientations, or adds a line with random thickness and orientation. Each random number controlling the magnitude of a
mutation is drawn from an exponential distribution governed by its rate parameter A. The TO algorithm implements SIMP
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Supplementary Figure 28. Evolution of experimental and simulation Pareto fronts during the outer loop, where the
sim-to-real gap closes after one round. The discovered microstructures are validated against the HS upper bound (black line).
We provide snapshots of several representative designs on the HS upper bound.

and runs continuous gradient-based optimization using the method of moving asymptotes (MMA). Echoing the valid porosity
range of the design space, we set the volume fraction constraint (Viax = 1 — ¢) between 0.25 and 0.9 and maximize the
homogenized Young’s modulus to discover porous microstructures near the HS upper bound. Considering that TO only yields
one design at a time, we conduct a series of optimization tasks under evenly sampled V. and arrange their order using a
greedy strategy to expedite hypervolume growth. More specifically, we choose each subsequent task to maximize the expected
Pareto hypervolume improvement from discovered designs assuming that the HS upper bound will be reached. The resulting
design is discarded if it violates the volume fraction constraint after quantization.

Supplementary Fig. 29 illustrates how Pareto hypervolume grows with the number of simulation evaluations for NMO,
NSGA-II, and TO-SIMP (with an MMA solver). Considering that TO only yields one optimal design at a time, we conduct
a series of optimizations using different weighted combinations of properties and active constraints. Their order is arranged
in a greedy strategy that maximizes theoretical hypervolume improvement according to the HS upper bound. Again, NMO
shows the highest sample efficiency especially in the early stage of the optimization when fewer than 1,000 samples are
evaluated (Supplementary Fig. 29a). It takes NMO only 400 simulations to reach 90% hypervolume of the theoretical HS upper
bound, 900 simulations for NSGA-II, and almost 4,000 simulations for TO (Supplementary Fig. 29¢). This is because the
neural network inside NMO quickly explores the entire design space and proposes valuable designs to the simulator after the
optimization starts. Since stiffness measurement is a linear problem, CNNs can learn to predict Young’s modulus reasonably
well with a small amount of training data. This allows NMO to rapidly expand its Pareto hypervolume. In comparison, TO has
to follow a sequence of optimization trajectories to reach the entire HS upper bound, consuming a large number of intermediate
evaluations despite the usage of MMA.
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Supplementary Figure 29. Comparison between NMO and other multi-objective optimization algorithms in Pareto
hypervolume growth within a budget of (a) 1,000 simulation evaluations and (b) 5,000 simulation evaluations. ¢, Number of
evaluations required for NMO and other baseline algorithms to reach 90% of the theoretical maximal hypervolume.

We note that NMO is surpassed by NSGA-II as the Pareto hypervolume approaches the HS upper bound (Supplementary
Fig. 29b). This is mainly due to the shrinking room for Pareto hypervolume growth at a later stage of the optimization. Although
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the neural network initially accelerates the exploration of the design space, giving accurate predictions for remaining designs
near the HS upper bound eventually comes in higher priority. Therefore, the hypervolume growth of NMO slows down as
the network tries to improve predictions for those top-performing designs. The strength-toughness trade-off introduced in the
manuscript, however, has an extremely non-smooth landscape and an unknown theoretical upper bound. In that case, it is
always preferable to explore the design space using NMO to expedite hypervolume growth within a tight simulation budget.
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A Tables

Young’s modulus Toughness
Name Min. Max. Name Min. Max.
Etp 8.08e5 1.21e6 ETs le5 2e6
Evw 2.13e9  3.19¢9 Evw le7 1e9
Err 4.51e8 6.77e8 Er le7 1e9
VTB 0.4 0.5 VIB 0.4 0.5
Vww 0.2 04 Vvw 0.2 04
VIF 0.3 0.4 VIF 0.3 0.4
- - - WTB 5e4 1e6
- - - WVW S5e4 le7
- - - WiE 1e6 1e8
V4 2e4 2e6 Y 2e4 4e6

Supplementary Table A1. Value ranges of simulation parameters used in system identification when fitting to physical
measurements of base materials in Round O of the competitive game.

Young’s modulus Toughness
Name Min. Max. Name Min. Max.
Etp 8e5 1.2e6 Ets 5e5 5e8
Evw 2.08¢9 3.12¢9 Evw 5e7 1e9
Err 4.48e8  6.72e8 Err le7 5e8
VTB 04 0.5 VIB 0.4 0.5
Vvw 0.2 0.4 Vwvw 0.2 0.4
VIF 0.3 0.4 VIF 0.3 0.4
- - - WTB S5e4 1e6
- - - Wyvw 5e5 le7
- - - Wik le6 1e8
Y 2e4 2e6 Y 2e4 4e6

Supplementary Table A2. Value ranges of simulation parameters used in system identification when fitting to physical
measurements of microstructures in the competitive game.
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Round No. o Exp. Sim. Rel. Sim. Rel. Sim. Rel. Sim. Rel. Sim. Rel.
(RO) err. (R1) err. (R2) err. (R3) err. (R4) err.

1 0.61 0.640 | 0.402 0.372 | 0.653 0.020 | 0.633 0.011 | 0.632 0.013 | 0.637 0.004

2 0.76 1.400 | 0.980 0.300 | 1.281 0.085 | 1.216 0.131 | 1.185 0.153 | 1.185 0.154

3 0.67 0.948 | 0.663 0.301 | 0931 0.018 | 0.889 0.062 | 0.878 0.074 | 0.881 0.070

4 0.83 1.541 | 1.333 0.135 | 1.646 0.068 | 1.559 0.012 | 1.510 0.020 | 1.505 0.023

5 0.84 1.747 | 1.509 0.136 | 1.826 0.045 | 1.718 0.017 | 1.654 0.053 | 1.647 0.058

6 0.51 0.347 | 0.118 0.659 | 0.346 0.002 | 0.340 0.020 | 0.349 0.005 | 0.357 0.029

7 0.51 0.301 | 0.133 0.560 | 0.370 0.229 | 0.363 0.204 | 0.370 0.228 | 0.378 0.254

8 0.54 0.330 | 0.023 0.932 | 0.347 0.053 | 0.342 0.037 | 0.356 0.080 | 0.368 0.115

0 9 0.60 0.533 | 0.261 0.511 | 0.526 0.013 | 0.511 0.041 | 0.515 0.034 | 0.523 0.020
10 | 0.75 1.178 | 0986 0.163 | 1.231 0.045 | 1.180 0.002 | 1.155 0.020 | 1.153 0.021

11 | 0.66 0954 | 0.603 0.368 | 0.801 0.160 | 0.784 0.178 | 0.778 0.185 | 0.780 0.182

12 | 0.74 1308 | 0980 0.251 | 1.232 0.059 | 1.171 0.105 | 1.142 0.127 | 1.140 0.128

13 | 076 1.375 | 1.075 0.218 | 1.330 0.033 | 1.264 0.080 | 1.231 0.104 | 1.228 0.107

14 | 0.82 1.659 | 1.255 0.243 | 1.539 0.072 | 1.470 0.114 | 1424 0.141 | 1.420 0.144

15 | 0.84 1790 | 1.479 0.174 | 1.775 0.008 | 1.681 0.061 | 1.625 0.092 | 1.617 0.096

16 | 0.85 1.767 | 1.523 0.138 | 1.827 0.034 | 1.729 0.021 | 1.674 0.053 | 1.666 0.057

17 | 0.85 1.771 | 1.604 0.094 | 1.915 0.081 | 1.807 0.020 | 1.742 0.016 | 1.733 0.022

18 | 0.85 1.807 | 1.729 0.043 | 2.080 0.151 | 1.934 0.070 | 1.844 0.020 | 1.833 0.014

19 | 0.64 0.819 | 0.605 0.261 | 0.854 0.042 | 0.810 0.012 | 0.793 0.032 | 0.796 0.028

20 | 0.58 0.860 | 0.736 0.144 | 0.919 0.068 | 0.876 0.018 | 0.854 0.007 | 0.853 0.008

21 | 0.67 0980 | 0.874 0.108 | 1.115 0.139 | 1.054 0.076 | 1.021 0.042 | 1.019 0.041

I 22 | 077 1.324 | 1.162 0.123 | 1.474 0.113 | 1.378 0.041 | 1.328 0.003 | 1.325 0.001
23 1079 1.572 | 1.356 0.138 | 1.678 0.067 | 1.566 0.004 | 1.502 0.045 | 1.496 0.049

24 1 0.79 1402 | 1479 0.054 | 1.792 0.278 | 1.661 0.185 | 1.583 0.129 | 1.574 0.123

25 | 0.85 1.764 | 1.613 0.086 | 1.963 0.113 | 1.838 0.042 | 1.760 0.002 | 1.751 0.007

26 | 0.85 1.810 | 1.738 0.040 | 2.089 0.154 | 1.945 0.074 | 1.856 0.025 | 1.845 0.019

27 | 0.68 0.987 | 0.774 0.215 0.961 0.026 | 0.944 0.044 | 0.944 0.043

28 | 0.74 1.227 | 1.056 0.140 1.273 0.038 | 1.232 0.004 | 1.230 0.002

29 | 0.75 1.277 | 1.166 0.087 1.361 0.066 | 1.313 0.028 | 1.309 0.025

) 30 | 0.79 1.308 | 1.281 0.021 1.480 0.132 | 1.432 0.095 | 1.427 0.091
31 | 0.80 1.450 | 1.355 0.065 1.577 0.088 | 1.516 0.046 | 1.510 0.042

32 [ 0.85 1.630 | 1.541 0.055 1.782 0.093 | 1.709 0.048 | 1.702 0.044

33 1085 1.690 | 1.723 0.019 1.923 0.138 | 1.833 0.085 | 1.822 0.078

34 | 085 1.679 | 1.724 0.027 1.930 0.150 | 1.841 0.097 | 1.831 0.091

35 [ 0.68 0.847 | 0.724 0.145 0.890 0.051 | 0.891 0.052

36 | 0.66 0.861 | 0.904 0.050 1.035 0.203 | 1.033 0.200

37 1074 1317 | 1.033 0.216 1.206 0.084 | 1.204 0.086

3 38 [ 0.76 1.302 | 1.207 0.073 1.362 0.047 | 1.358 0.043
39 [ 079 1528 | 1.305 0.146 1.459 0.045 | 1.454 0.048

40 | 0.82 1.629 | 1443 0.114 1.594 0.021 | 1.587 0.025

41 | 0.85 1.741 | 1.673 0.039 1.805 0.037 | 1.796 0.032

42 1 085 1.751 | 1.749 0.001 1.858 0.061 | 1.847 0.054

43 |1 0.70 1.093 | 0.968 0.115 1.112  0.017

44 1 074 1.164 | 1.015 0.128 1.167 0.003

45 | 0.77 1.297 | 1.151 0.112 1.299  0.002

4 46 | 0.79 1372 | 1.248 0.090 1.396 0.017
47 | 0.84 1.683 | 1.505 0.105 1.639 0.026

48 | 0.85 1.683 | 1.538 0.086 1.672  0.006

49 | 0.85 1.649 | 1.561 0.053 1.701 0.032

50 | 0.85 1.593 | 1.680 0.055 1.801 0.130

Supplementary Table A3. Experimental Young’s moduli (exp.), simulation predictions (sim.), and relative errors (rel. err.)
of all microstructures discovered by our approach (unit: GPa). Ri = Round i. Text in blue indicates predictions for the next
round.
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Round No. " Exp. Sim. Rel. | Sim. Rel. | Sim. Rel. | Sim. Rel. | Sim. Rel
(RO) err. (R1) err. (R2) err. (R3) err. (R4) err.
1 0.61 0.323 | 0.528 0.633 | 0.361 0.116 | 0.254 0.214 | 0.239 0.261 | 0.309 0.045
2 0.76  0.201 | 0.329 0.637 | 0.227 0.131 | 0.236 0.173 | 0.143 0.290 | 0.221 0.102
3 0.67 0.271 | 0398 0.470 | 0.395 0.458 | 0.327 0.207 | 0.286 0.056 | 0.273  0.009
4 0.83 0.276 | 0.307 0.114 | 0.274 0.007 | 0.246 0.109 | 0.190 0.310 | 0.203 0.264
5 0.84 0.375 | 0.277 0.261 | 0.310 0.171 | 0.282 0.247 | 0.214 0.429 | 0.211 0.436
6 0.51 0.309 | 0.487 0.574 | 0.255 0.177 | 0.275 0.110 | 0.190 0.387 | 0.275 0.110
7 0.51 0.245 | 0.231 0.057 | 0.270 0.099 | 0.132 0.461 | 0.141 0.425 | 0.221 0.098
8 0.54 0.117 | 0.022 0.809 | 0.102 0.126 | 0.078 0.329 | 0.102 0.124 | 0.143 0.226
0 9 0.60 0.252 | 0.222 0.119 | 0.344 0.365 | 0.194 0.227 | 0.204 0.188 | 0.244 0.029
10 | 0.75 0.211 | 0482 1.283 | 0.343 0.622 | 0.263 0.248 | 0.227 0.073 | 0.343 0.624
11 | 0.66 0371 | 1.304 2515 | 0410 0.105 | 0.359 0.031 | 0.310 0.165 | 0.386 0.039
12 | 0.74 0.261 | 1.112 3268 | 0.407 0.564 | 0.413 0.586 | 0.218 0.162 | 0.394 0.514
13 | 0.76 0.391 | 1.091 1.791 | 0.398 0.018 | 0.294 0.247 | 0.303 0.225 | 0.420 0.074
14 | 0.82 0.109 | 0.945 7.674 | 0.159 0.457 | 0.120 0.104 | 0.110 0.012 | 0.099 0.095
15 | 0.84 0.355 | 0.865 1.436 | 0.236 0.335 | 0.278 0.218 | 0.179 0.495 | 0.131 0.630
16 | 0.85 0.326 | 0.786 1.407 | 0.342 0.048 | 0.315 0.035 | 0.276 0.154 | 0.222 0.319
17 1 0.85 0313 | 0.603 0.927 | 0.291 0.069 | 0.222 0.292 | 0.223 0.289 | 0.243 0.224
18 | 0.85 0.304 | 0424 0.395 | 0.378 0.244 | 0.324 0.067 | 0.305 0.005 | 0.271 0.108
19 | 0.64 0.424 | 0.295 0.304 | 0.700 0.650 | 0.295 0.304 | 0.540 0.275 | 0.448 0.056
20 | 0.58 0.426 | 0.553 0.300 | 0.892 1.095 | 0.355 0.166 | 0.345 0.189 | 0.458 0.075
21 | 0.67 0.227 | 0.669 1.950 | 0.970 3.277 | 0.455 1.005 | 0.418 0.843 | 0.428 0.889
1 22 | 077 0513 | 0.554 0.079 | 0982 00913 | 0449 0.125 | 0.526 0.024 | 0.346 0.326
23 | 0.79 0.426 | 0452 0.062 | 0.865 1.033 | 0.452 0.063 | 0.494 0.161 | 0.343 0.193
24 | 0.79 0.491 | 0315 0.359 | 0.680 0.383 | 0.371 0.245 | 0.447 0.089 | 0.254 0.482
25 | 0.85 0.458 | 0.280 0.389 | 0.584 0.276 | 0.431 0.058 | 0.374 0.182 | 0.266 0.418
26 | 0.85 0473 | 0314 0.336 | 0.391 0.172 | 0.309 0.346 | 0.315 0.333 | 0.206 0.564
27 | 0.68 0315 | 0.612 0.943 0.598 0.897 | 0.338 0.074 | 0.467 0.483
28 | 0.74 0.331 | 0.395 0.195 0.611 0.847 | 0.340 0.029 | 0.304 0.081
29 1 075 0493 | 0423 0.141 0.589 0.196 | 0.530 0.075 | 0.390 0.209
) 30 | 0.79 0.381 | 0.364 0.045 0.541 0417 | 0.269 0.295 | 0.394 0.034
31 | 0.80 0.106 | 0.304 1.865 0.505 3.761 | 0.175 0.648 | 0.172 0.620
32 | 0.85 0.369 | 0.349 0.053 0.466 0.263 | 0.330 0.105 | 0.289 0.216
33 | 0.85 0.303 | 0.266 0.122 0.369 0.218 | 0.151 0.501 | 0.260 0.143
34 | 0.85 0.360 | 0.310 0.139 0.327 0.092 | 0.172 0.521 | 0.218 0.394
35 | 0.68 0.339 | 0.504 0.485 0.641 0.888 | 0.291 0.142
36 | 0.66 0.508 | 0.363 0.286 0.684 0.347 | 0.306 0.397
37 | 0.74 0.276 | 0.389 0.412 0.716  1.598 | 0.360 0.307
3 38 | 0.76 0.278 | 0.386 0.388 0.667 1.401 | 0.308 0.108
39 1 0.79 0351 | 0434 0.235 0.633 0.802 | 0.312 0.111
40 | 0.82 0.329 | 0479 0.453 0.544 0.650 | 0.265 0.196
41 | 0.85 0412 | 0.294 0.287 0.424 0.030 | 0.237 0.424
42 | 0.85 0.400 | 0.239 0.403 0.261 0.346 | 0.173 0.568
43 | 0.70 0.357 | 0.713  0.997 0.590 0.653
44 | 0.74 0.247 | 0.640 1.593 0.564 1.287
45 |1 0.77 0326 | 0.544 0.669 0.546 0.672
4 46 | 0.79 0425 | 0516 0.213 0.510 0.200
47 |1 0.84 0.263 | 0.361 0.374 0.450 0.712
48 | 0.85 0.348 | 0.398 0.144 0.398 0.144
49 | 0.85 0.348 | 0.419 0.203 0.369 0.060
50 | 0.85 0.394 | 0.302 0.233 0.256  0.350
Supplementary Table A4. Experimental toughness (exp.), simulation predictions (sim.), and relative errors (rel. err.) of all

microstructures discovered by our approach (unit: MPa). Ri = Round i. Text in blue indicates predictions for the next round.
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Family | 1 | 2 | 3 | 4
| No. E(GPa) | No. E (GPa) | No. E (GPa) | No. E (GPa)
22 1.324 18 1.807 15 1.790 5 1.747
Seed 24 1.402 26 1.810 16 1.767 17 1.771
microstructures 36 0.861 41 1.741
42 1.751
Validation 1-1 1253 | 2-1 1541 | 3-1 1470 | 41  1.447
microstructures 1.2 1329 |22 1779 |32 1703 | 42 1679
1-3 1485 |23 1703 | 33 1689 | 43 1.621
Family | 1 | 2 | 3 | 4
| No. T (MPa) | No. T (MPa) | No. T (MPa) | No. T (MPa)
22 0513 18 0304 15  0.355 5 0.375
Seed 24 0.491 26 0473 16  0.326 17 0.313
microstructures 36 0.508 41 0412
42 0.400
Validation 1-1 0369 | 2-1 0343 |31 0330 | 41 0.381
microstructures 1-2 0447 |22 0388 |32 0269 |42 0347
1-3 0420 |23 0458 |33 0350 | 43 0433

Supplementary Table A5. Comparison between the physical measurements of seed microstructures and validation
microstructures in each family. Microstructures in the same family show comparable Young’s moduli and toughnesses.
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Seed microstructures

. Sim. Rel. Sim. Rel.
Family No | ¢ Exp. | pg orr | (FS) err.
22 | 0.77 1324 | 1.325 0.001 | 1.158 0.126

1 24 1 0.79 1402 | 1.574 0.123 | 1.403 0.001
36 | 0.66 0.861 | 1.033 0.200 | 0.913 0.061

18 | 0.85 1.807 | 1.833 0.014 | 1.799 0.004

’ 26 | 0.85 1.810 | 1.845 0.019 | 1.809 0.001
41 | 0.85 1.741 | 1.796 0.032 | 1.756 0.009

42 | 0.85 1.751 | 1.847 0.054 | 1.812 0.034

3 15 1 0.84 1790 | 1.617 0.096 | 1.714 0.042
16 | 0.85 1.767 | 1.666 0.057 | 1.767 0.000

4 5 | 084 1.747 | 1.647 0.058 | 1.672 0.043
17 | 0.85 1.771 | 1.733 0.022 | 1.771 0.000

Validation microstructures

. Sim. Rel. Sim. Rel.
Family No | ¢ Exp. | pg  err | (FS) err
F1-1 | 0.73 1253 | 1.222 0.024 | 1.066 0.149

1 F1-2 | 0.75 1.329 | 1.359 0.022 | 1.204 0.094
F1-3 | 0.79 1.485 | 1451 0.022 | 1.284 0.135
F2-1 | 0.81 1.541 | 1.654 0.073 | 1.621 0.052

2 F2-2 | 0.85 1.779 | 1.825 0.026 | 1.794 0.009
F2-3 | 0.85 1.703 | 1.827 0.073 | 1.795 0.054
F3-1 | 0.83 1.470 | 1.510 0.027 | 1.582 0.076

3 F3-2 | 0.85 1.703 | 1.725 0.013 | 1.840 0.081
F3-3 | 0.85 1.689 | 1.724 0.021 | 1.841 0.090
F4-1 | 0.80 1.447 | 1426 0.015 | 1.430 0.012

4 F4-2 | 0.84 1.679 | 1.699 0.012 | 1.728 0.030
F4-3 | 0.85 1.621 | 1.736 0.071 | 1.774 0.094

Supplementary Table A6. Experimental Young’s modulus (exp.), simulation predictions (sim.), and relative errors (rel.
err.) of seed microstructures and validation microstructures in each family (unit: GPa). R4’ refers to the virtual testers in
Round 4. *FS’ means family-specific virtual testers.
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Seed microstructures

. Sim. Rel. Sim. Rel.
Family No | ¢ Exp. | pg orr | (FS) err.
22 | 077 0.513 | 0346 0.326 | 0.510 0.006
1 24 | 0.79 0491 | 0.254 0.482 | 0.468 0.048
36 | 0.66 0.508 | 0.306 0.397 | 0.466 0.083
18 | 0.85 0304 | 0.271 0.108 | 0.328 0.080
’ 26 | 0.85 0473 | 0206 0.564 | 0.416 0.121
41 | 0.85 0.412 | 0.237 0.424 | 0.428 0.039
42 | 0.85 0.400 | 0.173 0.568 | 0.315 0.213
3 15 | 0.84 0.355 | 0.131 0.630 | 0.336 0.054
16 | 0.85 0.326 | 0.222 0.319 | 0.326 0.000
4 5 |1 084 0375|0211 0436 | 0375 0.002
17 | 0.85 0.313 | 0.243 0.224 | 0.315 0.007
Validation microstructures
. Sim. Rel. Sim. Rel.
Family No | ¢ Exp. | pg  err | (FS) err
F1-1 | 0.73 0.369 | 0.375 0.017 | 0.748 1.028
1 F1-2 | 0.75 0.447 | 0.386 0.136 | 0.626 0.399
F1-3 | 0.79 0.420 | 0.305 0.275 | 0.535 0.272
F2-1 | 0.81 0.343 | 0.273 0.204 | 0.546 0.593
2 F2-2 | 0.85 0.388 | 0.115 0.703 | 0.561 0.446
F2-3 | 0.85 0.458 | 0.209 0.544 | 0.420 0.083
F3-1 | 0.83 0.330 | 0.281 0.147 | 0.535 0.623
3 F3-2 | 0.85 0.269 | 0.197 0.271 | 0.445 0.653
F3-3 | 0.85 0.350 | 0.169 0.516 | 0.312 0.106
F4-1 | 0.80 0.381 | 0.258 0.321 | 0.554 0.455
4 F4-2 | 0.84 0.347 | 0.252 0.274 | 0459 0.322
F4-3 | 0.85 0433 | 0.241 0.444 | 0313 0.277

Supplementary Table A7. Experimental toughness (exp.), simulation predictions (sim.), and relative errors (rel. err.) of
seed microstructures and validation microstructures in each family (unit: MPa). "R4’ refers to the virtual testers in Round 4.

"FS’ means family-specific virtual testers.
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Supplementary Figure B1. Isomap embedding spaces of subfamilies not displayed in Supplementary Fig. 17, each
containing around 2,000 to 3,000 samples and a few of them are visualized. Microstructure properties are encoded in colors (E:
the blue channel; T: the red channel). Seed patterns are marked in orange boxes.
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Supplementary Figure B2. Isomap embedding spaces of more subfamilies before and after refinement using interpolation
(Part 1). Microstructure properties are encoded in colors.
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Supplementary Figure B3. Isomap embedding spaces of more subfamilies before and after refinement using interpolation

(Part 2). Microstructure properties are encoded in colors.
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Supplementary Figure B4. Clean cleavage is observed after crack propagation in homogeneous composites with various
fractions of rigid material.
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