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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Computational discovery of microstructured 
composites with optimal stiffness-toughness trade-offs
Beichen Li1,2, Bolei Deng1,2,3, Wan Shou1,2,4*, Tae-Hyun Oh5, Yuanming Hu1,2, Yiyue Luo1,2,  
Liang Shi1,2, Wojciech Matusik1,2,3*

The conflict between stiffness and toughness is a fundamental problem in engineering materials design. Howev-
er, the systematic discovery of microstructured composites with optimal stiffness-toughness trade-offs has never 
been demonstrated, hindered by the discrepancies between simulation and reality and the lack of data-efficient 
exploration of the entire Pareto front. We introduce a generalizable pipeline that integrates physical experiments, 
numerical simulations, and artificial neural networks to address both challenges. Without any prescribed expert 
knowledge of material design, our approach implements a nested-loop proposal-validation workflow to bridge 
the simulation-to-reality gap and find microstructured composites that are stiff and tough with high sample effi-
ciency. Further analysis of Pareto-optimal designs allows us to automatically identify existing toughness enhance-
ment mechanisms, which were previously found through trial and error or biomimicry. On a broader scale, our 
method provides a blueprint for computational design in various research areas beyond solid mechanics, such as 
polymer chemistry, fluid dynamics, meteorology, and robotics.

INTRODUCTION
Stiffness—the ability to resist deformation in response to an applied 
force—and toughness—the ability to resist cracks—are two quintes-
sential properties in most engineering materials because these 
materials must resist nonrecoverable deformation and prevent cata-
strophic failure under external loading in structural applications. 
Unfortunately, stiffness and toughness are often mutually exclusive 
because, to be tough, a material must be ductile enough to tolerate 
long cracks and absorb more energy before fracturing (1). Although 
a few exceptions have been found among microstructured compos-
ites through trial-and-error approaches or biomimicry (2–7), there is 
no systematic way to design and fabricate these materials. Recent de-
velopment in additive manufacturing allows materials to be arranged 
combinatorially in space, enabling designs that were impossible 
to physically realize before, including high-performance structural 
materials (8–10) and functional objects (7, 11). Furthermore, com-
putational methods (e.g., structural optimization) allow for efficient 
exploration of optimal designs inside a parameterized design space 
with the help of numerical simulation (12–17). However, all reliable 
computational explorations require simulation models to accurately 
match the corresponding experimental measurements over the 
entire design space. This is still very difficult for toughness predic-
tion as current simulations—despite harnessing advanced fracture 
theories—are unable to fully model the fracture of structured materi-
als (18–20). Moreover, the computational process for finding micro-
structured composites that are both stiff and tough is also challenging 
because their conflicting nature dictates that there is not a single best 

solution but a set of Pareto-optimal solutions. To obtain the entire 
Pareto front where one can make simple trade-off decisions among 
optimal designs, existing structural optimization algorithms typi-
cally execute many single-objective optimization routines or rely on 
evolutionary strategies (21). Both of these strategies incur a large 
number of simulations. Therefore, finding Pareto-optimal designs 
using these approaches imposes contradictory demands on the sim-
ulator: The simulator not only should model all physical details to be 
accurate, but it must also run extremely fast to reduce computational 
cost. These simulators have to undergo careful design by field ex-
perts, which is normally unrealistic, especially for microstructured 
composites with complicated geometries and abundant material 
interfaces.

Here, we present an efficient and expert-knowledge–free ap-
proach for the automatic discovery of microstructured composite 
designs with optimal stiffness-toughness trade-offs (where stiffness 
is measured using Young’s modulus), tackling all of the aforemen-
tioned challenges simultaneously. Our approach uses three evaluators 
(Fig. 1A): (i) a mechanical tester that conducts physical measure-
ments, (ii) a finite-element method (FEM)–based simulator that 
performs virtual mechanical testing in moderate complexity, and 
(iii) a convolutional neural network (CNN)–based predictor that 
executes machine learning inference. All evaluators take an arbi-
trary microstructure design as input and then measure or predict its 
Young’s modulus and toughness as output, with varying evaluation 
speed and accuracy. The mechanical tester runs very slowly due to 
labor-intensive specimen fabrication and testing (~104 s per sam-
ple), but this provides ground truth performance values for a micro-
structure design. At the opposite end of the spectrum, we have the 
predictor, which runs extremely fast (~10−5 s per sample) but yields 
relatively inaccurate results. In between, we have the simulator, 
which runs reasonably fast (~1 s per sample) given its moderate 
complexity and delivers intermediate accuracy. The full pipeline ex-
ecutes in a nested-loop fashion. Faster evaluators, acting as surro-
gate models, conduct multi-objective structural optimization and 
propose microstructure designs on the Pareto front to slower evalu-
ators (from right to left, top, Fig. 1A). Slower evaluators, being more 
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accurate, validate the performance of these designs and use them as 
additional training data to improve the accuracy of the faster evalu-
ators (from left to right, bottom, Fig. 1A). As faster evaluators be-
come increasingly accurate throughout the process, they are able to 
propose higher-quality designs to the slower evaluators. Overall, 
our nested-loop pipeline effectively improves sample efficiency in 
finding microstructure designs with optimal stiffness-toughness 
trade-offs. The inner loop between the simulator and the predictor 
reduces the number of numerical simulations for finding the simu-
lator’s Pareto front by an order of magnitude compared with other 
state-of-the-art structural optimization algorithms. The outer loop 
between the mechanical tester and the simulator simultaneously 
closes the sim-to-real gap and finds experimentally verified Pareto-
optimal microstructure designs based on only a few dozen physical 
measurements. This is accomplished with a physics-based simulator 
that does not incorporate sophisticated or advanced modeling of 
material inelasticity or fracture. Despite the limited modeling capa-
bility, the simulator autonomously learns to match the behavior of 
Pareto-optimal microstructures with physical experiments.

RESULTS
The microstructured composites in this study consist of two acrylic-
based photopolymers, one rigid and one soft, which contrast in stiff-
ness and ductility (table S2). The unit cell of a microstructure, which 
we call a microstructure pattern (Fig. 1B and fig. S1), is constructed 
by digitally arranging the base materials in a 20 × 20 regular grid 
through three-dimensional (3D) printing (Fig. 1C). The Young’s 
modulus and toughness of a microstructure are measured on fabri-
cated specimens via tensile mechanical testing. To obtain reliable 
physical measurements that are comparable in horizontal and verti-
cal directions, we limit the volume fraction of the rigid material in a 

microstructure pattern between 50 and 85% and further enforce 
symmetry along axes and diagonals (see note S1). Even under these 
constraints, the design space of microstructures is sufficiently large 
to render exhaustive search methods infeasible.

At the foundation of our approach, the FEM-based simulator is 
constructed with simplified specimen geometry and material mod-
eling. The FEM grid comprises three types of elements: soft, rigid, 
and interface elements (see left-hand side of Fig. 2A). To simulate 
mechanical testing of a microstructured composite, each element 
type is characterized by three essential material parameters: Young’s 
modulus, Poisson’s ratio, and maximal strain energy density (the 
energy density beyond which an element fails and becomes void). 
Above them, a global damping coefficient is added to capture energy 
dissipation and suppress numerical oscillations, resulting in a total of 
10 exposed parameters. The exposed parameters are initially optimized 
to match experimental measurements of base materials, namely, ho-
mogeneous composites fabricated with soft, rigid, and interface ma-
terials, respectively (22). To minimize the expert knowledge required, 
advanced material parameters that control the fracture behavior, 
such as strength surface and critical energy release rate (23–25), are 
omitted from the simulator. This precludes tedious implementation 
and allows for substantial evaluation throughput. With a custom-
ized high-performance explicit solver for dynamic finite-element 
analysis (see note S3), it takes around 0.015 s for every Young’s modulus 
evaluation and 0.2 s for toughness at maximum throughput (fig. S6).

The inner loop of our nested-loop pipeline explores the maximal 
simulated performance range of microstructured composites (i.e., 
the simulated performance gamut) and finds designs on the simula-
tion Pareto front. Because the complex, discontinuous nature of 
fracture makes it almost impossible to reach theoretically Pareto-
optimal microstructures without exhaustive search, the goal of the 
inner loop is to find the largest Pareto front possible using a limited 

Fig. 1. Schematic of our approach. (A) Workflow of the proposed nested-loop pipeline. Our system integrates three distinctive evaluators: a mechanical tester, an FEM-
based simulator, and a CNN-based predictor, which vary in evaluation speed and accuracy. Data flow directions are indicated by colored arrows. Arrows from slower, more 
accurate evaluators to faster, less accurate evaluators illustrate the propagation of microstructure performance data for improving the latter’s accuracy. Arrows pointing 
in the opposite direction represent proposed Pareto-optimal designs from faster evaluators to slower ones for validation. The self-loop at the predictor depicts an evolu-
tionary strategy for finding its Pareto front. (B) Illustration of a microstructure and the corresponding microstructured composites. The microstructure is defined by a 
two-dimensional pattern that demonstrates the spatial arrangement of two base materials with contrasting properties. (C) Sample photographs of manufactured micro-
structured composites, annotated by the source microstructure patterns.
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Fig. 2. The inner loop of the proposed workflow with neural network-accelerated multi-objective optimization (NMO). (A) Workflow of NMO, illustrated by a 
zoomed-in snapshot of Fig. 1A. The simulator has 10 exposed parameters, including material model parameters of rigid, soft, and interface base materials plus a global damp-
ing coefficient. (B) Average prediction errors of Young’s modulus and toughness in NMO over 500 iterations, calculated for all discovered microstructures and specifically those 
on the simulation Pareto front. Shaded regions indicate SDs estimated from adjacent data points. (C) Evolution of design proposal quality, as characterized by the Pareto hy-
pervolume of 10 proposed designs in each iteration, over 500 iterations. NMO is compared with NSGA-II and a random sampling strategy. (D) Comparison of the final Pareto 
hypervolumes from NMO and its simplified alternative (NMO one iteration) that only trains the predictor with 5000 random designs and proposes designs back to the simula-
tor once. (E) Comparison between NMO and other multi-objective optimization algorithms in Pareto hypervolume growth within a budget of 5000 simulation evaluations. 
The baselines comprise our modified NSGA-II algorithm, topology optimization (TO) [e.g., BESO (27, 57) and SIMP (58)], and multi-objective Bayesian optimization (MOBO) 
[e.g., diversity-guided efficient multiobjective optimization (DGEMO) (29) and Thompson sampling efficient multiobjective optimization (TSEMO) (30)]. MOBO algorithms are 
stopped at 2000 simulations due to exceeding a time limit of 24 hours. Each solid curve is an average of repeats using five random seeds, and the colored region around each 
curve indicates SD. (F) Number of evaluations required for NMO and other baseline algorithms to reach a target hypervolume, marked by the dashed black line in (E).
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number of simulations. Unlike traditional methods that conduct 
structural optimization using the simulator exclusively, the inner 
loop of our approach uses the CNN-based predictor as a surrogate 
model to guide the optimization process (see note S3 for details), 
hence named neural network–accelerated multi-objective optimiza-
tion (NMO) (Fig. 2A). Starting from a dataset of 10 random micro-
structures (fig.  S15), NMO repeats the following steps for 500 
iterations in total (Fig.  2A). First, the two neural networks of the 
predictor, one for Young’s modulus and one for toughness, are 
trained using simulated properties of all microstructures in the cur-
rent dataset. Then, the Pareto front of the trained predictor is com-
puted using an evolutionary multi-objective optimization algorithm 
(right part of Fig. 2A; in our case, we use a modified non-dominated 
sorting genetic algorithm II (NSGA-II) (26); see Materials and Meth-
ods). Each of these Pareto front computations incurs a negligible 
time cost because the predictor runs orders of magnitude faster than 
the simulator. Last, the predictor proposes 10 Pareto-optimal de-
signs to the simulator for validation. The validated designs are used 
to augment the microstructure dataset to serve as additional train-
ing data in the next iteration.

In early iterations, the predictor is very inaccurate due to limited 
training data. Predictions for Pareto-optimal designs are particu-
larly inaccurate because they are far away from the microstructures 
in the initial dataset. Nonetheless, as the algorithm proceeds, the 
predictor becomes more accurate by virtue of accumulating train-
ing data from the simulator. This is evidenced by the decreasing 
prediction errors in both Young’s modulus and toughness over it-
erations (Fig. 2B). The prediction errors of Pareto-optimal micro-
structures decline even faster (the blue lines in Fig. 2B), indicating 
that the predictor improves its inference near the simulation Pareto 
front considerably after retraining.

Meanwhile, the self-learning predictor is able to propose increas-
ingly better microstructure designs to the simulator, which we quantify 
using the Pareto hypervolume (namely, the area enclosed by the Pareto 
front) of 10 validated designs in each NMO iteration (Fig. 2C). Com-
pared with a direct application of NSGA-II and random sampling, our 
approach shows consistently higher design proposal quality over the 
entire algorithm. Eventually, the repetitive proposal-validation work-
flow allows NMO to reach a Pareto hypervolume of 1.84 × 1015 N2 m−4 
after 500 iterations (5000 simulation evaluations excluding random 
initial designs). This is notably better than simply training the predic-
tor via 5000 random samples and validating Pareto optimal designs 
once (NMO one iteration in Fig. 2D), which only achieves 66.1% of 
our achieved hypervolume.

NMO outperforms state-of-the-art optimization algorithms in 
terms of exploration efficiency within the design space, including 
NSGA-II (26), topology optimization (TO) (27, 28), and other sur-
rogate model–based algorithms such as multi-objective Bayesian 
optimization (MOBO) (29, 30). As shown in Fig. 2E, NMO covers 
the largest Pareto hypervolume within a budget of 5000 simulations, 
surpassing TO and MOBO algorithms by a notable margin. This 
demonstrates promising opportunities for NMO to tackle structural 
design problems involving complex, nonlinear mechanical proper-
ties, where TO exhibits severe limitations. To further distinguish 
NMO in sample efficiency, we run both NMO and NSGA-II until 
reaching a target hypervolume of 1.72 × 1015 N2 m−4 and then ob-
serve the number of simulations required (Fig. 2F). Here, NMO 
takes an order of magnitude fewer simulation evaluations to achieve 
the target hypervolume, demonstrating evidently superior sample 

efficiency. Aside from the modified NSGA-II in this study, NMO is 
also compatible with other optimization algorithms for finding the 
predictor’s Pareto front. In practice, it is recommended to choose 
appropriate algorithms based on problem characteristics to maxi-
mize the advantage of the predictor.

Following the inner loop, we select eight Pareto-optimal micro-
structure designs from the simulation Pareto front, fabricate speci-
mens, and mechanically test their actual performance, which concludes 
round 0 of the outer loop. However, because our simulator does not 
incorporate sophisticated constitutive models or advanced fracture 
mechanics, the simulated properties of these microstructure designs 
deviate notably from their physical measurements. Unpredictable 
manufacturing flaws introduced by the 3D printer and measurement 
errors due to, e.g., boundary effects, further contribute to the sim-to-real 
gap. At this stage, the less accurate simulator normally tends to overes-
timate the performance of microstructures on its Pareto front because 
the optimization algorithm tries to exploit the discrepancies between 
simulation and reality. Thus, the experimental Pareto front of the 
selected microstructure designs is much smaller than the simulation 
Pareto front (Fig. 3A).

To close the sim-to-real gap, the outer loop of our pipeline im-
proves the accuracy of the simulator through system identification 
(Fig. 3B), where the exposed parameters of the simulator are opti-
mized to match simulation outputs with physical measurements for 
all discovered microstructure designs (fig. S7). Rather than setting 
simulation parameters using physical measurements of base materials 
directly, our approach computes parameters that holistically match 
the properties of a diverse set of microstructures. The sim-to-real 
gap is effectively treated as a black box, and system identification 
automatically absorbs all sources of errors into the exposed param-
eters of the simulator, including modeling, fabrication, and mea-
surement errors. This effectively compensates for the omission of 
advanced material models and fracture mechanisms. We choose 
Bayesian optimization (BO) as the solver for system identification, 
an algorithm frequently used to optimize complex, nonconvex func-
tions with many local optima. The BO solver is instantiated from 
multiple random seeds for better robustness. Moreover, by assigning 
different weights to the source microstructures, we are able to pri-
oritize matches for near–Pareto-optimal designs, so that the simula-
tor generalizes better to other designs with desirable performance 
(see note S3). This allows the simulator to propose designs that more 
likely expand the experimental Pareto front instead of spending its 
modeling capacity on designs far from optimal.

The outer loop uses the same proposal-validation workflow as the 
inner loop. Here, the simulator serves as a surrogate model for the me-
chanical tester to search for experimental Pareto-optimal microstruc-
ture designs with high sample efficiency. After round 0, we assemble a 
dataset of 18 discovered microstructures, including 8 proposed Pareto-
optimal designs from round 0 and 10 additional random designs for 
regularization in system identification (hollow blue markers in Fig. 3A). 
In each subsequent round, our pipeline updates the simulator via sys-
tem identification, searches for the simulation Pareto front through the 
inner loop (NMO), proposes eight Pareto-optimal microstructure de-
signs to the mechanical tester (Fig. 3B), validates their performance 
by physical measurements, and lastly adds them to the dataset of dis-
covered microstructures. We run the outer loop for four rounds and 
visualize the evolution of experiment data and simulated gamut in 
Fig. 3C. For a quantitative comparison, the advancement of their Pareto 
hypervolumes is illustrated in Fig. 3D. As the pipeline proceeds, the 
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Pareto front of experiment data gradually converges to the simulation 
Pareto front and the sim-to-real gap ultimately decreases by an order of 
magnitude. Among 50 microstructures found by the pipeline in total, 
we select 6 designs on or near the experimental Pareto front as the best 
examples and present their patterns in Fig. 3E. Compared with homo-
geneous composites fabricated by mixing base materials at various ra-
tios during 3D printing, they achieve up to 175.6% higher toughness 
under the same Young’s modulus or 61.0% higher Young’s modulus at 
the same toughness, demonstrating much better trade-offs between 
stiffness and toughness.

Intuitively, the outer loop parallels the inner loop as an automated 
self-learning process for the simulator (31–33). Because the microstruc-
ture dataset is augmented by eight new microstructures per round, 
the simulator becomes more accurate over time as depicted by its 

decreasing error from ground truth physical measurements (Fig. 3F). 
With higher accuracy, the simulator is able to propose increasingly bet-
ter microstructure designs in each round, as characterized by the im-
proving Pareto hypervolume of their physically validated properties 
(Fig. 3G). Therefore, even with our relatively simple simulator—which 
omits complex, advanced modeling techniques—our pipeline simulta-
neously bridges the sim-to-real gap and finds microstructures with ex-
perimentally verified Pareto-optimal performance.

From a methodology perspective, our data-driven computational 
approach inverts the standard design process: Instead of implementing 
handcrafted or bioinspired toughening mechanisms to fabricate syn-
thetic composites (4, 6, 34), we can interpret these mechanisms from 
automatically discovered Pareto-optimal designs even without any pri-
or knowledge (Fig. 4A). To that end, we first notice that microstructures 

Fig. 3. The outer loop of the proposed workflow. (A) Experiment data of discovered microstructures and the simulation gamut at the end of round 0. The sim-to-real 
gap is defined as the symmetric difference between the Pareto hypervolumes of the experimental Pareto front and the simulation Pareto front. (B) Workflow illustration 
of the outer loop as simplified from Fig. 1A. (C) Evolution of experiment data and the simulation gamut within four rounds of the outer loop, where the sim-to-real gap 
shrinks substantially. (D) Pareto hypervolume of experiment data and the simulation gamut, and the area of the sim-to-real gap over four rounds of the outer loop. 
(E) Representative microstructures found by the pipeline with optimal trade-offs. Numbers in parentheses indicate the improvement of a design in Young’s modulus and 
toughness compared to homogeneous composites with various volume fractions of the rigid material. (F) Average relative simulation error on Young’s modulus and 
toughness in each round of the outer loop. The error is calculated for all 50 discovered microstructures to showcase the improvement in simulation accuracy. (G) Quality 
of microstructure designs proposed by the simulator over the entire outer loop. Proposal quality is evaluated by the experimental Pareto hypervolume of eight proposed 
designs in each round. The quality of the 10 randomly chosen microstructures before round 1 (Rand.) is used as a reference.

D
ow

nloaded from
 https://w

w
w

.science.org at G
eorgia Institute of T

echnology on January 02, 2026



Li et al., Sci. Adv. 10, eadk4284 (2024)     2 February 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

6 of 11

Fig. 4. Analysis of families and intrinsic toughening mechanisms using discovered Pareto-optimal microstructures. (A) Schematic of the analysis workflow. 
Microstructures near the Pareto front are grouped into families and further split into subfamilies (see note S4 and fig. S17). The mechanical performance of each family 
is verified, while the pattern variation in each subfamily is studied in a low-dimensional embedding space. (B) Seed microstructures of four families and their mechanical 
performance compared with homogeneous composites. (C) Representative stress-strain curves of microstructures in each family collected from mechanical testing. 
(D and E) Isomap embedding space of an example subfamily before (D) and after (E) interpolation. Some representative patterns are illustrated. Microstructure properties 
are encoded in colors (Young’s modulus: the blue channel; toughness: the red channel). Seed patterns are highlighted in orange boxes. (F to H) Toughening 
mechanisms observed in experiment and simulation: bridging, deflection, and branching. Snapshots are taken from validation microstructures in family 1 (F), family 2 
(G), and family 3 (H).
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near the experimental Pareto front can be clustered into four major 
families, where designs in the same family are structurally similar 
(Fig. 4B) (13). The representative stress-strain curve from each family 
exemplifies how these designs improve fracture resistance considerably 
over the rigid base material while maintaining comparable Young’s 
moduli, resulting in optimal stiffness-toughness trade-offs (Fig. 4C). 
Therefore, the microstructure families allow for extracting and inter-
preting toughening mechanisms by groups rather than individual de-
signs. To verify the discovered families, we treat the physically measured 
microstructures as seeds and generate a local performance gamut for 
each family through dense sampling, from which three validation sam-
ples near the Pareto front of each family are selected and validated by 
the mechanical tester (fig. S16 and table S13). Moreover, to intuitively 
explore microstructures with similar appearance and performance, we 
take advantage of our well-trained simulator to generate a local gamut 
for each seed design near the experimental Pareto front and compute a 
low-dimensional embedding space using Isomap (Fig. 4D) (35). We ad-
ditionally build an interpolation model for neighboring patterns in the 
embedding space (see note S4 and fig. S16) to generate patterns that are 
potentially missed in dense sampling, which eventually refines the em-
bedding space (Fig. 4E).

By analyzing tested specimens and simulation videos, the discov-
ered microstructure families allow us to successfully identify some 
well-known mechanisms of toughness enhancement, such as bridg-
ing, deflection, and branching (18, 36–39) (Fig. 4, F to H). These 
mechanisms resist crack growth and prevent the formation of clean 
cleavage as observed in homogeneous composites (fig. S33). Their 
prominence varies depending on the distribution of soft material. 
Bridging is mostly observed in family 1, where parallel bars of soft 
material absorb more energy through elastic deformation and intro-
duce additional stress resistance by crack blunting to slow down 
crack propagation (Fig. 4F and fig. S22). Deflection is witnessed in 
both family 1 and family 2, as characterized by chunks of soft mate-
rial that withstand a large strain and disturb the cracks (Fig. 4G and 
figs. S22 and S3). Conversely, branching effects are predominant in 
family 3 and family 4, which feature scattered elements of soft mate-
rial. In this case, the propagation energy of the cracks dissipates in 
the form of branched cracks due to the trapping effect from soft ma-
terial (Fig. 4H and figs. S24 and S25) (40). In addition, we also ob-
served other toughing mechanisms that do not obviously fall into 
the three prevailing categories. For example, some isolated soft ma-
terial elements are assigned to the edge of a microstructure pattern 
(fig. S24), either near the notch tip or on the path of crack propaga-
tion. Despite not being organized into shapes such as bars or circles, 
these elements still effectively dissipate energy and delay crack prop-
agation (1). Overall, it is common among discovered families that 
soft material elements enhance toughness through crack blunting, 
while stiff material elements are integrally connected to maintain 
Young’s modulus (see note S4). Our pipeline automatically finds the 
critical soft and stiff elements that contribute to balanced Young’s 
modulus and toughness without prescribed knowledge of existing 
toughening mechanisms. These structural features are generated us-
ing a fully computational method instead of biomimics or experi-
mental trial and error. Therefore, they may pave the way for novel 
physical insights, provided that further characterization and analysis 
are conducted by experts in fracture mechanics.

In addition, our computational pipeline has adequate scalabili-
ty to solve Pareto-optimal microstructure discovery problems in 
higher-design resolutions. For example, we applied our pipeline to 

find the Pareto front between stiffness and porosity in isotropic 
porous materials (see note S5 for details about fabrication, experi-
ment, and simulation). The microstructure patterns in this case 
study are represented by 182 × 104 grids, constituting a consider-
ably larger design space. Nonetheless, our pipeline still maintains 
excellent sample efficiency in Pareto front discovery (fig. S29). 
Moreover, our approach manages to identify designs with theoreti-
cally optimal performance as prescribed by the Hashin-Shtrikman 
upper bound (41, 42) (fig. S28).

DISCUSSION
In conclusion, we have presented a generalizable, scalable, and effi-
cient computational approach that does not require expert knowledge 
to automatically find microstructured composites with optimal trade-
offs between stiffness and toughness. We integrate three distinct eval-
uation methods—experimental measurement, numerical simulation, 
and machine learning inference—in a data-driven proposal-validation 
framework. The essence of our approach is a nested-loop workflow 
that improves the sample efficiency of slow, accurate evaluators by 
harnessing fast, approximate evaluators as surrogate models and pro-
gressively improving their accuracy. Our pipeline achieves superior 
sample efficiency when discovering the simulation Pareto front, running 
an order of magnitude fewer simulations than other state-of-the-art 
structural optimization algorithms. With a data-driven self-learning 
simulator, we find the experimental Pareto front of Young’s modulus 
and toughness using only a few dozen physical measurements. Fur-
thermore, our automated strategy is able to identify prevailing tough-
ening mechanisms that were initially found by field experts based on 
intuition or biomimicry and through experimental trial and error. 
This is an inversion of traditional composite design approaches since 
toughening mechanisms stem from Pareto-optimal designs. Our 
pipeline circumvents the time-consuming, labor-intensive develop-
ment of advanced simulation models and eliminates the need for any 
prerequisite knowledge of toughness enhancement. Therefore, our 
pipeline is readily applicable to various trade-off problems well be-
yond the field of solid mechanics, especially where simulation strug-
gles to match reality, such as polymer chemistry (43), computational 
biology (44, 45), fluid dynamics (46, 47), meteorology (48, 49), and 
robotics (50).

MATERIALS AND METHODS
Specimen manufacturing
All homogeneous and microstructured composites were manufac-
tured on a Stratasys Object 260 Connex multimaterial 3D printer 
with a nominal resolution of 300, 600, and 800 dpi in x, y, and z di-
rections, respectively. VeroWhitePlus (VW+) and TangoBlackPlus 
(TB+), two acrylic-based photopolymers, were used as base materi-
als. The model orientation is visualized by the coordinate axes in 
fig. S2. Specifically, microstructure patterns are located on the x-y 
plane and sweep along the z direction, where the longest dimension 
of the model aligns with the y direction. Regarding the scale of 
printed specimens, each pixel in a microstructure pattern is calcu-
lated to be a 260 μm2, a reasonable approximation to the least com-
mon multiple of the droplet dimensions in x and y directions.

To enable droplet-level control, we used a voxel printing ap-
proach supported by the printer. In the voxel printing mode, droplet 
configurations were precomputed locally and sent to the printer in 
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real-time. This allows for printing homogeneous composites mixed 
with base materials at a given ratio. For any volume fraction of the 
rigid base material, denoted by ϕ a printing model was created by 
probabilistically assigning base materials to droplets, where each 
droplet was assigned with the rigid material at a probability of ϕ. 
Because the base materials are miscible, homogeneous composites 
were printed by mixing the droplets on the fly. Homogeneous com-
posite materials with ϕ = 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, and 0.9 
were printed as benchmarks.

Physical measurement
For Young’s modulus measurements, all testing specimens were 
printed following the dimensions recommended in ASTM D638. For 
toughness measurements, as there is no standard reference for het-
erogeneous composites, we devised our specimens shown in fig. S2. 
The dimensions of a toughness specimen are 104 mm by 52 by 3.2 mm. 
A notch with a length of 10.4 mm was printed, equivalent to 20% of 
the specimen’s width. After that, a triangle cut was added using a 
milling machine at a depth of 7.8 mm, which is 15% of the specimen’s 
width. The length of the gripper area on either side is 25 mm, leaving 
a 54-mm gauge area in the middle.

After printing, all specimens were carefully cleaned to remove 
support material and dried at room temperature. An ultraviolet (UV) 
light post-curing process was conducted on both the top and bottom 
sides of the sample to get more uniform curing. This step was per-
formed in a Fusion UV system with a constant belt speed of around 
2 cm/s. In addition, the printed notch of each toughness specimen 
was cleaned by a new razor blade to avoid the influence of residual 
support material at the tip.

All specimens were tested on an Instron 5984 universal testing 
machine with a maximum load of 150 kN. Tensile tests for Young’s 
modulus measurements were conducted according to ASTM D638. 
Four specimens were tested for each composite, and the results were 
averaged. On the toughness side, there is no existing standard tar-
geting heterogeneous composites. Thus, we used the following ten-
sile test method. The specimen was pulled at a rate of 2 mm/min. 
Data acquisition stopped once the crack propagated entirely through 
the specimen. Because crack propagation in microstructured com-
posites is nonlinear, the toughness is defined as the energy absorbed 
and dissipated per unit volume, namely, the area under the stress-
strain curve (2). At least four specimens were tested for each com-
posite, where at least three specimens that manifested the most 
common and consistent fracture behaviors were considered valid. 
These valid toughness measurements were averaged, from which a 
representative stress-strain curve was selected. The same procedure 
was followed when testing homogeneous composites for consisten-
cy. Measured stress-strain curves from the toughness test of several 
representative microstructures are provided in fig. S8. For each mi-
crostructure design, four specimens were fabricated and measured 
(distinguished by color). The stress-strain curves of the same micro-
structure pattern are generally consistent, with SDs consistently less 
than 5% of the mean for Young’s modulus and less than 20% for 
toughness.

Interface engineering
Interfaces between the rigid and soft base materials are engineered 
by applying crafted droplet patterns in interface areas, i.e., half-pixel 
wide areas around shared edges and vertices of adjacent pixels 
(fig. S3). The droplet patterns approximate a 50/50 mixture of the 

base materials and vary depending on the orientation of shared edges. 
On the basis of the coordinates defined in fig. S3, droplets are ar-
ranged in alternate columns for edges along the x direction (vertices 
included) and alternate rows for edges along the y direction (vertices 
excluded; see note S1). The droplet patterns remain consistent in the 
z direction during 3D printing. Figure S4 compares the perfor-
mance of five random microstructures manufactured with engi-
neered interfaces, nonengineered interfaces, and default interfaces 
to the printer. The results demonstrate that our interface engineer-
ing method yields the best trade-off between Young’s modulus and 
toughness in printed specimens. In addition, the engineered inter-
faces are modeled using an interface material in simulation and 
count as the third base material.

Simulation
The simulator comprises a pair of FEM-based virtual testers, which 
predict Young’s modulus, toughness, and nonlinear stress-strain re-
sponse given a microstructure pattern. The Neo-Hookean material 
model is used for all three base materials (VW+, TB+, and interface 
material) in a 2D setting (see the Supplementary Materials for de-
tails). The FEM grids represent simplified geometries of manufac-
tured specimens. To model the interfaces between the rigid and soft 
materials, microstructure units in the FEM grids are upsampled by 
two times, and elements located at interfaces are assigned with the 
interface material (fig. S5). Dirichlet boundary conditions are en-
forced on displacements in the pulling direction. An explicit solver 
is used for time integration as it is usually preferred for dynamic 
simulations, and it is simple to implement. Material viscosity is mod-
eled using numerical damping and controlled by a global damping 
coefficient. For toughness, crack initiation and propagation are 
modeled by thresholding the strain energy density of each element 
as derived from the Neo-Hookean model, where the element is re-
moved upon exceeding a material-specific strain energy density 
threshold. The simulation stops when the gauge stress drops below 
20% of the ultimate strength, and toughness is calculated using the 
area beneath the stress-strain curve. For Young’s modulus, a small 
constant strain is applied, and the grid is allowed to converge to an 
equilibrium within a fixed number of timesteps. Young’s modulus is 
then obtained from the measured gauge stress. Algorithmic details 
and parameter values of the virtual testers can be found in the Sup-
plementary Materials.

Our simulator was implemented using the high-performance Taichi 
programming language (51) to harness the tremendous acceleration 
power of graphics processing units (GPUs). To further increase the 
throughput, multiple microstructures were batched and simulated 
simultaneously to enable maximum GPU utilization (fig. S6).

System identification
The simulated behaviors of a microstructure are contingent on several 
tunable parameters in the simulator, including Young’s moduli, Pois-
son’s ratios, and strain energy density thresholds of the base materials 
plus a global damping coefficient. These parameters are optimized in 
system identification for a close match between the simulation output 
and the physical measurements. Here, the objective function accounts 
for multiple sources of errors, including modeling (the Neo-Hookean 
constitutive model and a simplified fracture mechanism), fabrication 
(from 3D printing and specimen preparation), and measurement (inac-
curacies of the equipment and other random influences from the envi-
ronment). For Young’s modulus, the mean relative prediction error is 
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minimized over a collection of composites, referred to as the system 
identification dataset. For toughness, the minimization objective is a 
combination of mean relative prediction errors on both the toughness 
value and the stress-strain curve, where the relative error of the curve is 
defined as the area between simulated and experimental stress-strain 
curves divided by experimental toughness. To fully use the modeling 
capabilities of the virtual testers, we keep parameter values separated 
between Young’s modulus and toughness simulation. Furthermore, mi-
crostructures in the dataset are weighted to reflect priority in system 
identification (fig. S9). First, microstructures closer to the experimental 
Pareto front have larger weights since we mainly focus on near–Pareto-
optimal designs. Second, to alleviate possible bias from an uneven per-
formance distribution in the dataset, weight penalties are inflicted upon 
clusters of microstructures whose physical measurements are too close 
to one another. A more detailed mathematical formulation of system 
identification is provided in the Supplementary Materials. We used 
batch BO to solve the minimization problem due to its excellent data 
efficiency and compatibility with our batch simulation mechanism. The 
BO algorithm was repeated for five times using different random seeds, 
after which the best solution was selected (see note S3 for implementa-
tion details).

Neural network–accelerated multi-objective optimization
We developed the NMO algorithm to explore the design space of 
microstructures and discover Pareto-optimal samples in high sam-
ple efficiency. The exploration started from randomly generated mi-
crostructures as the first generation. Unlike NSGA-II algorithms 
that compute offsprings from mutation and crossover operations, 
NMO uses the predictor, which contains a pair of residual CNNs 
(52), as a surrogate model to guide the proposal of the next genera-
tion (see the Supplementary Materials for details). Both networks 
are instantiated from the same architecture template, but the net-
work for toughness is much larger (fig. S10). This allows for greater 
learning capacity to capture the complex mapping from microstructure 
patterns to toughness. In each iteration, the networks were trained 
on the simulation results of all discovered microstructures. On the 
basis of their predictions, a modified NSGA-II algorithm was run to 
propose Pareto-optimal samples that likely expand the hypervolume 
of the current gamut. The proposed samples became the next gen-
eration of microstructures once their performance was validated by 
the simulator.

The modified NSGA-II algorithm within NMO has a custom mu-
tation operator and an additional hash-table-based deduplication 
mechanism. The custom mutation operator substitutes the original 
mutation and crossover operators in offspring generation. It changes 
a microstructure pattern at varied scales probabilistically, including 
flipping a single pixel, drawing a rasterized line, or overwriting a 
rectangular area of pixels. Symmetry and structure constraints are 
subsequently enforced on the mutated pattern. The hash table–based 
deduplication mechanism prevents microstructures from being added 
to the next generation if they have already been found and is a faster 
alternative to exhaustive match in existing patterns. The NMO algo-
rithm stores found microstructures in a global hash table, while each 
individual run of the modified NSGA-II algorithm uses a separate 
hash table. More implementation details are provided in the Supple-
mentary Materials.

We note that the validation of the inner loop and the outer loop 
were conducted separately. While NMO was evaluated for the inner 
loop in Fig. 2, we directly used the modified NSGA-II to verify the 

outer loop and generate the results in Fig. 3. Despite being evaluated 
independently, NMO is readily applicable to the computational dis-
covery pipeline because our modularized implementation switches 
between optimization algorithms very easily.

Sample selection for physical validation
In each round of the outer loop, several microstructures near the simu-
lation Pareto front were selected for physical validation (fig. S14). The 
selection algorithm has two stages. First, to identify microstructures 
that are sufficiently close to the Pareto front, we associated each micro-
structure with a rank induced by Pareto dominance. By our definition, 
the first rank comprises microstructures on the Pareto front of the 
whole gamut, and the i-th rank contains microstructures on the Pareto 
front of a partial gamut where those in higher ranks are excluded. 
Then, a microstructure qualified as a selection candidate if the follow-
ing three criteria were satisfied: (i) it is in the third rank or higher; (ii) 
its simulated performance trade-off is better than the actual perfor-
mance trade-off of homogeneous composites; and (iii) its toughness is 
higher than the microstructure with the largest Young’s modulus in the 
gamut. Second, we chose eight microstructures from the candidates to 
cover a wide range of mechanical performance and improve the diver-
sity among discovered microstructures. To that end, the candidate mi-
crostructures were divided into eight radial bins according to their 
normalized mechanical performance. Then, we solved a combinatorial 
optimization problem, where one microstructure was chosen in each 
bin such that the selected microstructures were maximally distin-
guished from the discovered ones and from each other. The optimiza-
tion problem was tackled using a beam search algorithm that finds an 
approximated best solution in a few seconds. In the Supplementary 
Materials, we provide a more detailed description of the selection algo-
rithm, including a mathematical formulation of the combinatorial op-
timization problem.

Analysis of microstructure families and 
toughening mechanisms
After the nested-loop pipeline terminated, 11 microstructures with 
near-optimal trade-offs between experimental Young’s modulus and 
toughness were categorized into four families (Fig. 4B). We refer to 
these microstructures as seed microstructures. They were used to 
generate more pattern variations in each family and verify that the 
similarity in mechanical performance is preserved. This procedure 
breaks down into the following steps. To start, a family-specific simu-
lator was obtained in each family from system identification on all 
near–Pareto-optimal microstructures. In this case, the seed micro-
structures were assigned with large identical weights, while others 
outside the family were assigned with small identical weights for 
regularization purposes. These family-specific simulators have much 
lower prediction errors on the seed microstructures in the family 
compared to the global simulator in round 4 (table S7). Then, on the 
basis of simulation results from the family-specific simulators, we 
ran a dense evolutionary sampling algorithm around seed micro-
structures to generate a local gamut for each family. The sampling 
algorithm is akin to the modified NSGA-II algorithm but limits the 
mutated patterns within a maximum of 16-pixel difference from seed 
microstructures. There is neither tournament selection of parents 
nor competition among the population; hence, the target is simply 
to generate a gamut as dense as possible. Last, three near–Pareto-
optimal microstructures were chosen from the resulting local gamut 
for physical validation (fig. S16), whose physical measurements were 
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demonstrated to be comparable to seed microstructures (table S13). 
Therefore, we confirmed that the discovered families contain micro-
structures with similar patterns and mechanical performance.

To visualize the pattern variation in each microstructure family, 
we divided each family into subfamilies by extracting microstruc-
tures within a 16-pixel radius from each seed microstructure, allow-
ing any microstructure to occur in multiple subfamilies. For every 
subfamily, a 2D embedding space was computed for all microstruc-
ture patterns using Isomap (35). The first Wasserstein distance (53), 
i.e., the earth mover’s distance (EMD), was used as the distance met-
ric between microstructure patterns instead of the Euclidean dis-
tance (fig. S18) because EMD takes into account pixel distributions 
in microstructure patterns and better reflects differences in geomet-
ric shapes. Figures S17 and S30 illustrate the visualized embedding 
spaces of 11 subfamilies across four families. Furthermore, we built 
an interpolation model for neighboring microstructures in the Iso-
map embedding space to generate more microstructures that might 
be missing in our dense sampling (fig. S17). Our interpolation 
method is based on Wasserstein barycenters from optimal transport 
theory (54, 55), which has been successfully demonstrated as a ro-
bust, intuitive interpolation scheme among voxelized shapes (56). In 
this way, we generated around 5% more microstructure patterns in 
each subfamily, on average, and used them to refine the Isomap em-
bedding spaces. A comparison between the embedding spaces be-
fore and after interpolation is illustrated in figs. S21, S31, and S32. A 
mathematical formulation of EMD and our interpolation scheme 
can be found in note S4.

The identification of microstructure families simplifies the analy-
sis of intrinsic toughening mechanisms leading to near-optimal 
trade-offs between Young’s modulus and toughness. As microstruc-
tures have similar patterns and performance in each family, they 
typically share common structural features that enhance fracture re-
sistance. Thus, we used video recordings of seed microstructures and 
validation microstructures in each family to observe and interpret 
several predominant toughening mechanisms. For each microstruc-
ture, the simulation video produced by family-specific simulators 
was validated against actual footage from mechanical testing to veri-
fy that the mechanisms were properly captured by the simulator. The 
representative mechanisms of each microstructure family are thor-
oughly discussed in the Supplementary Materials.

Supplementary Materials
This PDF file includes:
Notes S1 to S5
Figs. S1 to S33
Tables S1 to S15
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