
168

Procedural Metamaterials: A Unified Procedural Graph for
Metamaterial Design
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Fig. 1. (Top) Structures spanning five major classes of cellular architectures, all of which can be expressed compactly via our procedural graphs (beneath

each structure, nodes colored by operation type). (Bottom) Expanded view of our procedural graph for the Schwarz P structure, with a visualization of the

construction process: our operations transform simple guiding topology into a skeleton that is solidified according to a spatially varying thickness function.

We introduce a compact, intuitive procedural graph representation for
cellular metamaterials, which are small-scale, tileable structures that can
be architected to exhibit many useful material properties. Because the
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structures’ “architectures” vary widely—with elements such as beams, thin
shells, and solid bulks—it is difficult to explore them using existing repre-
sentations. Generic approaches like voxel grids are versatile, but it is cum-
bersome to represent and edit individual structures; architecture-specific
approaches address these issues, but are incompatible with one another.
By contrast, our procedural graph succinctly represents the construction
process for any structure using a simple skeleton annotated with spatially
varying thickness. To express the highly constrained triply periodic min-

imal surfaces (TPMS) in this manner, we present the first fully auto-
mated version of the conjugate surface construction method, which allows
novices to create complex TPMS from intuitive input. We demonstrate our
representation’s expressiveness, accuracy, and compactness by construct-
ing a wide range of established structures and hundreds of novel struc-
tures with diverse architectures and material properties. We also conduct
a user study to verify our representation’s ease-of-use and ability to expand
engineers’ capacity for exploration.

CCS Concepts: • Computing methodologies→Modeling methodolo-

gies; Shape modeling; • Applied computing→ Computer-aided design;

Additional Key Words and Phrases: Graph representation, cellular metama-
terials, microstructures, shellular, triply periodic minimal surfaces (TPMS),
truss structures, hybrid metamaterials, conjugate surface construction
method, procedural graph, procedural representation
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1 INTRODUCTION

Metamaterials are structures of long-standing interest, as they in-
duce material properties that differ from those of their constituent
base material(s). Metamaterials often exhibit behaviors that are
not found in nature, such as tuneable compliant, chiral, auxetic
and non-reciprocal behaviors [Jenett et al. 2020; Ou et al. 2018;
Panetta et al. 2015], and impressive strength-to-weight ratios [Qin
et al. 2017].

The behavior of a given metamaterial is primarily governed
by its cellular architecture, which is the regular or random spatial
arrangement of solid regions and voids used to fill a designated
volume [Schaedler and Carter 2016]. The set of possible cellular
architectures is uncountably large, even when we restrict our
attention to, e.g., the space of regular cellular solids that fill a unit
cube and tile periodically in R3, as shown in Figure 1. Figure 1
also displays the many architectural elements that occur within
our subspace, such as straight/curved beams, thin shells, and solid
bulks. This breadth is powerful, as each architectural class offers
a unique set of strengths [Bertoldi et al. 2017; Gibson et al. 2010;
Surjadi et al. 2019].

However, these distinct classes complicate metamaterial design,
because no existing representation is well suited for all structures.
Generic representations like voxel grids can express any structure,
but the specification is cumbersome and difficult to edit, since
even simple changes (e.g., thickening a beam) trigger many
independent voxel updates. Class-specific representations are
often more practical, as each structure’s description is compact
and editable. However, the underlying specifications are as varied
as the structures themselves: trusses and beams are often given
by graphs; solid bulks stem from constructive solid geometry

(CSG) operations; and thin-shell cellular (shellular) structures
use surface meshes or implicit functions. These specifications are
not immediately compatible with one another, so it is difficult to
explore over more than one class.

In some cases, it is difficult to explore variations even within

a given class, as each structure requires a unique derivation. For
example, many shellular metamaterials are based on TPMS, which
are precisely defined as the integral of an Enneper–Weierstraß
function. For ease of use, TPMS are commonly approximated by,
e.g., level sets of an implicit trigonometric function. However,
both function types are structure specific and difficult (if not
impossible) to derive. This limits the set of structures accessible
to engineers and, thus, available for exploration.

To alleviate these challenges, we propose a procedural graph
representation that streamlines the process of metamaterial design
for a wide range of common classes, including generic TPMS. Our
representation is specific to cellular metamaterial design, which
allows us to capitalize on characteristics like symmetries while
ensuring that our representation is equally suitable for all tar-
get classes. Moreover, our representation is compact, intuitive,

and easily editable, such that it is amenable to manual or auto-
mated design space exploration. Finally, it is expressive enough
to represent not only known structures, as shown in Figure 1,
but also novel structures containing elements from one or more
class(es).

The most critical aspect of our representation is the unified skele-

tal design space, which uses simple elements like lines and surfaces
to capture the wide range of shapes found in metamaterials. Each
skeletal element is constructed from a small set of simple, high-
level specifications comprised of vertices and edges, a bounding
volume, and the type of skeletal element (e.g., line, surface) to be
instantiated. Each element is also annotated with a spatially vary-
ing thickness function that determines how it should eventually
be thickened into a physically realizable volume (e.g., beam, shell,
or solid bulk).

Although this design space naturally accommodates most of our
target classes, the TPMS shellulars present a considerable obstacle.
Our TPMS approach is grounded in mathematical principles, yet
compatible with the design space described above and intuitive
enough to be used by novices. A critical element of our approach
is the conjugate surface construction method (CSCM), which
is “one of the most powerful techniques to construct minimal sur-
faces with a proposed shape in mind” [Karcher and Polthier 1996].
However, existing CSCM algorithms are largely inaccessible, as
they require extensive domain expertise and human intervention.
We embed the CSCM in an optimization loop to realize the first
fully automatic version of this pipeline, making it accessible to a
wider audience.

In summary, our contributions include the following:

• a practical algorithm for TPMS via our extended CSCM,
• a unified skeletal design space that compactly expresses the

thickness-annotated skeletons for a wide range of metamate-
rials, including the five major classes in Figure 1, and
• an intuitive procedural graph representation that facilitates

the exploration and evaluation of novel structures.

We validate our approach by constructing hundreds of struc-
tures with diverse architectures. We also conduct a user study to
verify our representation’s intuitiveness and ease-of-use. Finally,
although we defer guided search strategies and physical property
validation to future work, we show the potential of our approach
by defining simple, random exploration schemes that automati-
cally generate truss and shellular structures with a wide range of
material properties.

2 RELATED WORK

2.1 Cellular Architectures

The notion of metamaterials is very broad: even within graph-
ics, HCI, and ML, recent research includes two-dimensional (2D)
metamaterial sheets that are embedded in 3D [Konaković et al.
2016; Martínez et al. 2019; Signer et al. 2021]; interactive meta-
material mechanisms [Ion et al. 2016, 2019, 2017]; functionally
graded structures for, e.g., spatially varying elasticity [Schumacher
et al. 2015]; and multi-material composites with engineered prop-
erties [Gongora et al. 2021]. Although our approach may also ap-
ply to these domains, we restrict our focus to static 3D cellular
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metamaterials whose unit cells are regular (rather than random),
tilable in R3, and confined to a unit cube.

Trusses and Beams. Trusses and beams are often used for meta-
materials, as they are easy to specify yet widely varied. The space
of truss topologies alone is large enough to demand its own tax-
onomy [Zok et al. 2016], even before accounting for continuous
parameters like vertex positions or thickness profiles over beams
and their junctions. To explore this space, Jenett et al. [2020] and
Frenzel et al. [2017] hand-designed several curved-beam structures
exhibiting chiral, auxetic, rigid, and compliant behaviors. For di-
verse Poisson’s ratio and Young’s modulus values, Panetta et al.
[2015] described 1, 205 truss-based topologies using a tetrahedral
decomposition of a cube and a graph over 15 possible nodes. Bastek
et al. [2022] created 262 topologies by deforming and superimpos-
ing seven fundamental lattice units. Chen et al. [2018] used topol-
ogy optimization to compute candidate structures, over which they
fit graph templates to create parametrized truss families with ex-
tremal properties. Our representation is reminiscent of these ap-
proaches and trivially captures truss- or beam-based topologies
that reside in a unit cube. However, we expand this powerful graph-
based representation by porting it to architectures that are tradi-
tionally less amenable to exploration.

Solid Bulks. Solid bulks appear in many forms, including
non-periodic spinodoid topologies [Kumar et al. 2020], foams
[Ashby 2006], and open-cell porous structures [Tian et al. 2020].
However, we restrict ourselves to regular topologies, such as the
topology-optimized, cubic-symmetric structures of Schumacher
et al. [2015]. Chan et al. [2020] proposed another set of cubic-
symmetric structures based on the level sets of 36 crystallographic
space groups. Many CSG-like structures have also been hand-
designed for specific properties like phononic bandgap [Muham-
mad and Lim 2021]. Our representation covers the vast majority
of these regular structures.

Shellulars. Shellular units are often based on 2-manifold sur-
faces [Nguyen et al. 2016] or non-manifold surfaces like cubic lat-
tices and honeycomb cells [Spadoni et al. 2014]. Several works also
design functionally graded porous structures by spatially varying
these base surfaces [Hu et al. 2022b; Lu et al. 2014]. Our represen-
tation captures a wide range of (non-)manifold surfaces, but the
latter examples are out of scope, as we focus on individual cells.

TPMS Shellulars. TPMS are minimal surfaces that tile seam-
lessly along three mutually orthogonal directions in R3. Non-self-
intersecting TPMS are of particular interest, as they partition the
surrounding volume into two or more distinct labyrinthine chan-
nels. Shellulars based on TPMS are smooth and uniquely suitable
for additive manufacturing [Hu et al. 2022b; Qin et al. 2017; Yan
et al. 2021, 2020], making them ideal for tasks such as bone scaf-
folding [Ambu and Morabito 2019; Ataee et al. 2018], static mixing
[Ouda et al. 2020], thermal energy management [Attarzadeh et al.
2022; Fan et al. 2022], and strength-preserving lightweighting [Qin
et al. 2017]. TPMS are often created by Enneper–Weierstraß func-
tions, specialized triangle meshes [Reitebuch et al. 2019], or level
sets of implicit functions. The latter have enabled several TPMS
explorer tools [Al-Ketan and Abu Al-Rub 2021; Hsieh and Valde-
vit 2020; Jones et al. 2021; Maskery et al. 2022] and methods for

hybrid TPMS creation. Feng et al. [2021] and Khaleghi et al. [2021]
construct hybrid TPMS by extracting isosurfaces from weighted
sums of TPMS’ trigonometric approximations, while Chen et al.
[2019] and Feng et al. [2021] use mesh Booleans. Zhang et al. [2021]
propose hierarchical TPMS structures by assembling small-scale
TPMS cells into larger ones. Although promising, these methods
are limited by their reliance on structure-specific TPMS represen-
tations, which are difficult to construct and combine with other
classes. Our approach addresses both limitations.

Alternatively, Akbari et al. [2020, 2022] construct surface- and
truss-based approximations of TPMS from physical principles by
using 3D graphic statics to explore the dual graphs of geometric
form and static forces. To design hybrid TPMS, they specify the tar-
get labyrinth(s), i.e., channels of negative space surrounding the
surface, and then construct a surface that partitions the volume ac-
cordingly. This scheme is powerful, but even domain experts strug-
gle to relate labyrinth–surface pairs [Schoen 2008]. Our approach
takes input describing the surface itself rather than its voids.

As discussed in Section 1, a critical element of our TPMS ap-
proach is the CSCM, which was introduced by Lawson [1970] in S3

and then adapted toR3 by Karcher [1989] with a discrete approach
by Pinkall and Polthier [1993]. This method (described in Section 4)
leverages a surface’s associate family to construct complex TPMS
indirectly. We introduce the first automated, easy-to-use pipeline
for this method.

2.2 Relevant Modeling Methods

Procedural Modeling. Procedural models “encapsulate a large va-
riety of shapes into a concise formal description that can be ef-
ficiently parametrized” [Krs et al. 2021], which lends them to a
variety of tasks including 2D textures and shaders [Cook 1984; Hu
et al. 2022a; Perlin 1985; Shi et al. 2020] and virtual world modeling
[Prusinkiewicz and Lindenmayer 2004; Smelik et al. 2014; Whiting
et al. 2009]. Graph-based models are of particular interest, as they
are widely used in practice (e.g., SideFX Houdini, Blender, Adobe
Substance Designer), and they are amenable to performance op-
timization [Boechat et al. 2016] and the intuitive specification of
edits and constraints [Krs et al. 2021; Michel and Boubekeur 2021].
Our procedural graph builds on these ideas toward concise, intu-
itive metamaterial design.

Skeleton-based Modeling. Skeletons have long been explored for
efficient shape representation, as many volumetric shapes are well
approximated by lower-dimensional structures [Bærentzen and
Rotenberg 2021; Blum 1967]. Tagliasacchi et al. [2016] survey the
rich skeletonization literature, which generally tries to reduce a
volume to a skeleton. By contrast, we specify skeletons to con-

struct a volume. Although most approaches approximate shapes
with curve networks, Tagliasacchi et al. [2012] observe that some
shapes are best represented by meso-skeletons containing a mix of
curves and surfaces. As such, we develop a concise meso-skeleton
representation for shapes appearing in metamaterial design.

3 OVERVIEW

As suggested by Figure 1, regular cellular architectures are well
suited for skeleton-based design, as they are often highly sym-
metric structures derived from lines, surfaces, and easily re-
ducible solid primitives. We could imagine modeling any such
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Fig. 2. Metamaterial construction. Our graphs succinctly create structures based on (top) a recently discovered TPMS [Chen and Weber 2021], (middle)

auxetic curved beams [Jenett et al. 2020], and (bottom) a face-centered cubic solid [Lu et al. 2017]. Edge chains can be smooth (dashed) or non-smooth (solid).

metamaterial with four simple steps: (1) build the skeleton for
a small fundamental piece of the structure, (2) assign a spa-
tially varying thickness profile T (p) for each point p of the skele-
ton, (3) apply any transformations (e.g., mirroring, rotation) re-
quired to fill the tiling unit, and (4) realize the final volumet-
ric object according to T (p). To achieve this simple approach,
we must address three challenges. First, we characterize the re-
quired skeletal elements and parametrize them in a concise, con-
sistent manner. Then, we embed our boundary portion is re-
stricted skeletal design space in a representation that captures the
four-step approach above. Finally, we envision a user-centric
modeling process that is easy and intuitive.

3.1 Skeletal Design Space

Driven by our five target classes, our skeletal design space must ac-
commodate straight/curved beams, planar/curved shells, and basic
volumetric primitives such as cuboids and spheres. We posit that
line and surface skeletons are sufficient to capture these shapes,
when paired with a few annotations. To motivate and codify this
design space, we briefly examine the needs of each shape category.

Beams. Straight and curved beams are well represented by line
skeletons, which follow a path given by an ordered list of vertices.
Curves can be created from concise vertex lists via, e.g., natural cu-
bic spline interpolation. Thus, we need only introduce a “smooth-
ness” flag to determine whether individual segments should be
straight or smoothed. The final cross section of the thickened
beams can be controlled by a spatially varying thickness profile
over the line.

Shells. Shells are best represented by surface skeletons anno-
tated with a spatially varying thickness profile, as above. Surface
skeletons are also amenable to an ordered-vertex parametrization,
as surfaces are frequently generated over a target boundary loop.
For example, the widely studied Plateau problem spans a fixed
boundary with a minimal surface, which locally minimizes surface
area and has zero mean curvature everywhere [Harrison and Pugh
2016; Wang and Chern 2021]. Minimal surfaces can also be given
by the free boundary problem, in which the input boundary is not
fixed: each boundary portion is restricted to lie in its given plane,
but its specific shape is inferred automatically as it “slides” along
the plane to improve the metric [Karcher 1989]. For general TPMS
construction, both boundary types are required. To capture them,
we devise a pair of sliding solvers that take smoothness-annotated
boundaries as input: smooth boundary portions are permitted to
slide, while non-smooth portions remain fixed. The mixed minimal

sliding solver is used when at least one fixed edge is present, as in
Figure 2 (top). For fully sliding boundaries—which may otherwise
degenerate—we introduce the conjugate solver, based on our ex-
tended CSCM. Finally, we introduce direct solvers to generate (not
necessarily minimal) surfaces over fully fixed boundaries; here,
non-smooth boundary portions remain straight while smooth por-
tions are interpolated. All of our solvers assume disc topology
(genus 0), as higher-genus surfaces can generally be decomposed.
Critically, this also holds for TPMS: despite having genus ≥3
[Garbuz 2010; Meeks 1975], TPMS can be decomposed via their
symmetry lines (see Section 4.1).

Volumetric Primitives. When combined with simple thicken-
ing methods, lines and surfaces yield many basic primitives. For
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example, by offsetting the thickness along the skeleton’s normal
direction(s), we can transform a line into a cylinder or a square-
bounded planar surface into a cuboid. Similarly, by sweeping a
sphere of the desired radius across our line/surface skeleton, we
can create cylinders/cuboids with rounded ends/edges. This yields
a sphere if the underlying line has length zero, as in Figure 2
(bottom).

Unified Design Space. In summary, line and surface skeletons
capture our full set of target structures. Each skeletal element can
be given by (1) a smoothness-annotated path over 3D vertices,
(2) the skeletal type/solver, and (3) a spatially varying thickness
profile over the element’s domain. For sliding solvers, we also pro-
vide (4) a set of bounding planes. Sections 4 and 5 explore the tech-
nical aspects of this design space.

3.2 Unified Procedural Graph

To facilitate the four-stage modeling process posed above, we
create a procedural graph that unifies our skeletal design space
with other pertinent operations. As shown in Figures 1 and 2,
each graph node performs an operation such as vertex creation,
line/surface inference, mirroring, or skeleton thickening. Each
node also has properties that control its behavior. For example,
an edge chain has a smoothness flag, and each surface node has
a solver type and a thickness profile. By chaining and sequentially
evaluating these nodes, we can form a variety of structures. We
can also directly integrate nodes for performance evaluation, in-
cluding, e.g., voxelization and simulations for material property
prediction. Section 6 provides the full set of operations, along with
their properties and implementation details.

3.3 User Design Process

To conceptualize a structure in our representation, users work
backward through the stages of our procedural graph. First, users
identify symmetries (e.g., mirrors, rotations) to reduce the struc-
ture to its smallest representative unit(s). After discounting thick-
ness, they arrive at the structure’s fundamental skeleton (FS),
which resides in the fundamental bounding volume (FBV). We
support three scalable FBV primitives (cuboid, triangular prism,
and tetrahedron) and custom FBVs. An FBV typically occupies
a small part of the unit cube, though this need not be the case
(Figure 2, bottom). Structures may also contain multiple FS, each
residing in a unique FBV. Once each FS is identified, users can be-
gin building the graph. The constituent vertices and edge chains
for each FS are given by tracing its guiding/bounding path and
classifying each portion as (non-)smooth. If a boundary contains
both smooth and non-smooth portions, then multiple edge chains
are required (Figure 2, top). The edge chains are then fed into a
skeleton node, which can be transformed as needed to fill the unit
cube and then thickened into an object. As the graph takes shape,
users must verify that all nodes’ required conditions are met, e.g.,
for sliding solvers, all smooth boundary portions must lie on an
FBV face. All such requirements are detailed in Section 6.

3.4 Outline

To build up a full understanding of our representation, we first
explain our conjugate surface solver (Section 4), which is critical

for many popular TPMS structures, and also our primary techni-
cal challenge. In Section 5, we discuss the remaining surface and
line solvers, together with our spatially varying thickness anno-
tations. The procedural graph is detailed in Section 6 and then
evaluated for expressiveness, compactness, and intuitiveness in
Section 7, which includes a user study.

4 CONJUGATE SURFACE CONSTRUCTION

Our conjugate surface solver provides a stable approach for TPMS
whose FS is the solution to a free boundary problem, i.e., the FS
boundary consists entirely of sliding edges that are permitted to
change in order to reduce surface area. Under standard approaches
such as mesh-based gradient flows [Brakke 1992; Dziuk 1990],
these problems are prone to degeneration (see Supplementary Ma-
terials and [Karcher and Polthier 1996]). However, by leveraging
the associate family of a minimal surface, the CSCM provides a sta-
ble three-step approach to these problems, as shown in Figure 3: (1)
Construct a related Plateau problem, (2) solve it, and then (3) apply
a simple transformation to obtain the solution to our original prob-
lem [Karcher 1989; Karcher and Polthier 1996; Pinkall and Polth-
ier 1993]. Although this approach is powerful, existing algorithms
require considerable domain expertise. We introduce a novel op-
timization loop to automate the CSCM and make it accessible to
novices. Although we defer a detailed treatment of the CSCM to
prior works, we provide the critical intuition (Section 4.1) before
discussing our extension (Section 4.2).

4.1 Background and Overview

An associate family Fϕ (u,v) is a set of minimal surfaces that can
be continuously transformed into one another by varying the
scalar ϕ. Some well-known families transform a catenoid into
a helicoid or a Schwarz P surface into a Schwarz D (Figure 4).
For special pairs of surfaces S1, S2 ∈ Fϕ (u,v), the family can be
parametrized as follows:

Fϕ (u,v) = cosϕ · S1(u,v) + sinϕ · S2(u,v), (1)

= �(e−iϕ · [S1(u + iv) + iS2(u + iv)]) , (2)

where �(z) returns the real part of a complex number z. As
suggested by the complex formulation, the special surfaces S1 (at
ϕ = 0) and S2 (at ϕ = π

2 ) are said to be conjugate to one another.

More generally, any two members Fθ and Fθ+ π
2 are conjugate

to one another and every minimal surface is part of such a pair.
These surface pairs have several pertinent properties:

Proposition 4.1 (Conjugate Surface Properties). Let S be a

minimal surface and C be its conjugate. Then the following are true:

(a) For any arbitrary point (u0,v0) in the domain, the surface nor-

mals NS (u0,v0) and NC (u0,v0) are identical.

(b) S and C are isometric, so the angles at corresponding points

(u0,v0) along the boundary are identical on both surfaces.

(c) If some portion of S is bounded by a straight line, then the cor-

responding portion of C is bounded by a planar symmetry line

and vice versa.

The symmetry lines noted in Proposition 4.1(c) are critical for
minimal surfaces (particularly TPMS), as they allow the surface to
be extended while preserving smoothness:
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Fig. 3. Conjugate surface construction. Based on the (a) input, we (b) infer the angles and surface normals (blue) at each vertex and (c) construct a dual

contour that respects these properties. Then, we (d) solve a Plateau problem over the dual contour and (e) conjugate the dual surface to arrive at the primary

surface matching our original specifications. Finally, we (f) align the primary patch to the input and extend the patch to construct the full TPMS.

Fig. 4. Associate family and symmetry lines. The associate family

transforms a Schwarz P surface patch (left) into its conjugate Schwarz D

patch (right). The Schwarz P’s planar symmetry lines (e.g., red/green/blue

curves) morph into straight lines bounding the Schwarz D.

Proposition 4.2 (Minimal Surface Extension). Let S be a

minimal surface partially bounded by a symmetry line �. Then,

(a) If � is a planar symmetry line in plane p, then � must be fully

contained in p, S must meet p orthogonally, and S can be ex-

tended by reflecting across p.

(b) If � is a straight line, then S can be extended by rotating 180◦

about �.

As hinted in Section 3, symmetry lines can also be used to
decompose a complex surface into a fundamental patch P bounded
by symmetries. Then, by Proposition 4.1(c), P has a conjugate P̄
bounded by the opposite symmetries. Moreover, it is possible to
construct one surface from the other via a “conjugation” process
[Karcher 1989; Pinkall and Polthier 1993]. Thus, the problems of
solving for P and P̄ are equivalent. Since the term “conjugate”
is overloaded—as the relationship between P and P̄ as well as
the procedure that maps between them—we call P the primary

surface and P̄ the dual.
The above equivalence is the foundation of the CSCM, which is

most powerful when the dual P̄ can be solved for more easily than
our primary target, P . For example, when P is a free boundary prob-
lem, its boundary ∂P contains only planar (sliding) symmetries;
thus, ∂P̄ is a simple polygonal contour that admits a Plateau so-
lution [Gray and Micallef 2007]. The CSCM easily recovers P by
solving and conjugating P̄ . The CSCM has fewer advantages when
∂P has mixed symmetries, as ∂P̄ is similarly complex. As such, we
only apply the CSCM (via our conjugate solver) when P is a free
boundary problem; other cases are deferred to our mixed minimal

solver (Section 5.1.1).
The CSCM (Figure 3) contains several steps that are well estab-

lished and tangential to our extension; for a full description, we
refer readers to our Supplementary Materials. Here, we need only
discuss the construction process for ∂P̄ (from Figures 3(b) to (c)),
as this is the major limitation of existing CSCM algorithms.

By Proposition 4.1(a), the surface normal at each dual vertex
v̄ ∈ ∂P̄ must match that of the corresponding primary vertex

ALGORITHM 1: MainConjugateSurfaceConstruction

Input: bounding planes B , closed edge loop L

Output: minimal surface P solving the free boundary problem

HB ← convex polyhedron bounded by half-spaces of B

� Find co-planar verts and vert angles/normals for dual contour

vA← EmptyMap(), vN← EmptyMap(), V ← EmptyMap()

for vertex v in counterclockwise traversal of L do

p1, p2 ← planes of B containing v , with outward-facing normals

vA[v] ← dihedral angle between p1, p2

vN[v] ← normalize((normal of p1) × (normal of p2))

V [p1].append(v ), V [p2].append(v )

end

� Find the rigid transformation for bounding plane alignment

P test, E test ← ContourEnergy(l init, vA, vN, V , HB , I )

Btest ← convex bounding volume of P test

R ← rotation that best aligns B and Btest

� Compute and post-process the best solution

P, E ← arg min
l

ContourEnergy(l , vA, vN, V , HB , R)

return FixBoundary(P )

ALGORITHM 2: ContourEnergy
Input: edge lengths l , vertex angles vA, vertex normals vN, coplanar

vertex sets V , bounding polyhedron HB , rotation R

Output: primary mesh candidate Pl , energy value E

c ← SolveContour(l, vA, vN)

P̄l ← SolvePlateauProblem(c )

Pl ← R · ConjugateSurface(P̄l )

E ← Econtour(Pl , V , HB )

return Pl , E

v ∈ ∂P . Moreover, since P must be orthogonal to both bounding
planes incident onv (Proposition 4.2(a)), the normal atv must align
with the intersection line on whichv sits. By Proposition 4.1(b), the
angle1 between adjacent edges incident on v̄ equals the dihedral
angle spanned by the planes incident on v . These facts prescribe
everything about ∂P̄ except the length of each edge. Boundaries
with four vertices are determined up to scaling due to the loop clo-
sure condition, but for N vertices, there are generally (N − 4) edge
lengths that can be set arbitrarily.

1The angle is measured within the plane spanned by the pair of lines.
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Previous works require users to manually compute these edge
lengths using an iterative process that requires an understanding
of the relationship between ∂P̄ and P [Karcher and Polthier 1996].
This is especially taxing when aligning P with a given FBV, as the
edges’ relative lengths determine the alignment—thus, they can-
not be set arbitrarily. Improper edge lengths may also preclude a
valid solution entirely: for the period problem, in which multiple
portions of ∂P reside on the same bounding plane (see Table 2,
“Wei’s genus 4”), most length assignments fail [Karcher and Polth-
ier 1996]. Existing methods rely on a manual intermediate value
argument that cannot readily expose the permissible values. Our
approach identifies a valid solution while obscuring the CSCM de-
tails and reducing the required user expertise (as evidenced by the
user study in Section 7.3).

4.2 Our Edge Length Optimization

To address the limitation of existing CSCMs, we devise a fully au-
tomated solver (Algorithm 1) for free boundary problems given by
a set of boundary planes B and an ordered edge loop L over these
planes. We propose an optimization loop that finds edge lengths l
for the dual contour ∂P̄ , such that the final surface P conforms to B.

4.2.1 Pre-processing. To prepare for our optimization, we first
infer the normals vN and angles vA at each vertex of ∂P̄ , as de-
scribed in Section 4.1. In addition, we compute the convex polyhe-
dron HB that is enclosed by the half spaces given by B. We also in-
ferV : = {V0, . . . ,VK−1}, where K is the number of planes in B and
Vi is the set of vertices from L that belong to plane i . These vertex
sets can be used w.r.t. any primary or dual surface, since we know
the pointwise correspondences for any point in L by construction.
Finally, we compute a rotation R that will align the candidate pri-
mary surfaces to B for comparison. To do this, we first construct a
sample primary mesh P test. We fit a plane to each co-planar vertex
setVi along the boundary of P test, which results in a set ofK bound-
ary planes Btest, as shown in Algorithm 1. We use the approach of
Müller et al. [2005] to find the R that best aligns the normals of B
and Btest. We need only compute R once, because all future candi-
date primary surfaces (and thus, their bounding planes) will share
the same orientation; only the scale will differ.

4.2.2 Objective Function. To judge each candidate contour with
lengths l = {li }, we devise a two-term objective function,

Econtour(Pl ,V ,HB ) = EBV(Pl ,V ,HB ) + Ecoplanar(Pl ,V ),

where Pl is the primary mesh output by the CSCM on a contour
with lengths l , EBV penalizes differences between the boundary
planes of Pl and our target planes B, and Ecoplanar penalizes the
mis-alignment of boundary vertices in Pl that are supposed to be
co-planar.

First, we find the bounding planes Bl for Pl by fitting a plane to
each co-planar vertex setVi . Since R has already been applied to Pl ,
we set the normal ni to be the normal of plane i in B. The plane’s
origin ci is given by ci =

1
|Vi |

∑
j ∈Vi

pj , where pj is the position of

the jth vertex. Then, Ecoplanar can be defined as follows:

Ecoplanar =

K−1∑
i=0

∑
j ∈Vi

(
nT

i (pj − ci )
)2
. (3)

Finally, to evaluate EBV, we compute the convex polyhedron
that is enclosed by the half-spaces of Bl . We use the iterative clos-

est point (ICP) algorithm [Amberg et al. 2007] to align this poly-
hedron with our reference, HB . We only permit translation, as the
rotation R has already been accounted for. After alignment, EBV
is given by the mean squared distances between the two polyhe-
dra. As we only consider translation, we did not encounter uncon-
verged ICP results during our optimization.

The method above is designed for arbitrary convex bounding
polyhedra. However, when the polyhedronHB is an Axis-Aligned

Bounding Box (AABB) (i.e., six axis-aligned planes forming a
cuboid space) we can leverage a stronger objective. Namely, for
any pair of points pj ,pk on opposite, parallel planes of the AABB
with normal na , we know the expected distance da between pj and
pk along na . Thus, we can encode both EBV and Ecoplanar if we en-
sure that all such pairs pj ,pk are distance da apart in the normal
direction, i.e.,

EAABB
contour =

3∑
a=1

∑
j ∈Va,1

∑
k ∈Va,2

( [
nT

a (pj − pk )
]2
− d2

a

)2
, (4)

where a is the axis index for the {x ,y, z} directions, na is the unit
axis-a direction,Va,1 andVa,2 are the sets of boundary vertices on
each opposing plane with normal na , and da is the target distance
between the two planes in direction na .

4.2.3 Regularizing Edge Lengths. On each evaluation of the en-
ergy function (Algorithm 2), we have a set of suggested lengths
l input over the contour that may or may not form a closed loop.
We verify the closedness and/or adjust the lengths as neces-
sary by solving the following mini-minimization problem during
SolveContour:

arg min
l base

∑
i

(
lbase
i − l

input
i

)2
, (5)

s.t.
∑

i

lbase
i ei = 0, (6)

where lbase
i is the edge length that will be used as the base guess for

edge i on this iteration and ei is the contour edge direction given
by vA and vN. The linear constraint guarantees that lbase

i forms a
closed loop. Since this is a quadratic energy with linear constraints,
lbase
i is obtained by directly solving a small linear system.

4.2.4 Initialization. To seed our optimization and create P test,
we find an initial guess l init for the contour lengths. By construc-
tion, all input vertices lie on the edges of the convex polyhedron B,
and contour edges lie on the faces of B. As shown in the inset, we
categorize each contour edge ei based on its
endpoints, which can be on (1) two neigh-
boring polyhedron edges h1,h2; (2) two non-
neighboring polyhedron edges h1,h2 on the
same face; or (3) the same polyhedron edge h1.
The input edges for each case are shown in
red, and the corresponding arcs along the pri-
mary surface P are shown in green. Although
the green curves are not known a priori, each case behaves in a
relatively consistent manner, as evidenced by, e.g., Proposition 4.2,
which implies that final contour edges must intersect polyhedron
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edges perpendicularly. The expected length of each green curve
predicts the corresponding dual length, because lengths are pre-
served due to isomorphism (Proposition 4.1(b)). Thus, based on
the expected shape of each final contour, we developed a simple
heuristic (shown in purple) for the initial length l init

i of ei in each

case. In case (1), l init
i is the length of an arc between h1 and h2, as-

suming the arc is part of the circle whose center is the intersection
point of h1 and h2 and whose radius is the average distance from
each endpoint of ei to the circle center. In case (2), l init

i is the dis-
tance between the endpoints of ei . In case (3), we let the distance
between the endpoints be the diameter of a circle whose center is
the mid point of h1; then, l init

i is half of the circle’s perimeter.

4.2.5 Optimization. Beginning from l init, we optimize the en-
ergy given in Algorithm 2 using the gradient-free Nelder–Mead
method [Nelder and Mead 1965]. Because it is common to have
large differences in absolute edge lengths, the optimization con-
verges faster if we optimize the ratio to each edge’s base length
rather than the absolute length itself. By defining the optimization
over this ratio space, we can also easily define generic lower and
upper bounds for each edge length. We use 0.1 and 10, respectively.

4.2.6 Post-processing. After constructing a suitable primary
mesh P , we apply our previously computed rotation to ensure that
the returned surface aligns with B. Although the overall agreement
is quite high, numerical issues frequently cause the vertices of our
conjugated surface boundary to be slightly offset from their in-
tended planes. To resolve this issue, we “snap” all boundary ver-
tices to their intended boundary planes. We do this via our direct
surface solver (described in Section 5.1.2). For this, we treat P as
our rest shape and compute the target position for each boundary
vertex by projecting its current position to the target plane. Our
small discrepancies only induce a slight deformation of P , so the
accuracy of our result is unaffected, as shown in Section 7.1.

5 COMPLETE SKELETAL DESIGN SPACE

The conjugate surface solver described above lets us solve free-
boundary problems in a stable manner. Now, we round out our
skeletal design space by describing the remaining skeletal solvers
and our spatially varying thickness specification.

5.1 Surfaces

To complete our surface design space, we describe the mixed min-

imal and direct surface solvers. Figure 5 highlights the variation
within our surface space by showing the result of each solver over
identical annotated boundary loops and planes.

5.1.1 Mixed Minimal. Our mixed minimal surface type is a slid-
ing solver for boundaries that are at least partially fixed, such
as the FS of the TPMS from Hao Chen’s oΔ/tΔ family (Figure 2,
top). As discussed in Section 3, the shape and location of all non-
smooth boundary segments are preserved, such that the boundary
of the computed surface coincides precisely with all fixed input.
Smooth (or “sliding”) segments have much more freedom, as they
are treated like free boundaries that are permitted to deform within
the given boundary plane. To achieve a minimal surface subject
to these constraints, we perform a mean-curvature flow algorithm

Fig. 5. Surface types over identical input. A given FBV and annotated

boundary (where dashed edges are smooth and others are not) can

generate many outputs based on the selected surface type: method (a)

preserves the dashed line, method (b) allows it to deform into a curve

within its plane, and method (c) allows sliding not only for this edge but

for all edges, as our conjugate solver assumes fully sliding boundary loops

regardless of annotations.

that imposes Dirichlet boundary conditions along any fixed bound-
aries and sliding constraints along sliding boundaries.

5.1.2 Direct. Direct surfaces yield more general (non-minimal)
surfaces over fully fixed boundaries. Segments contained in a non-
smooth edge chain remain straight, while each smooth edge chain
is first interpolated into a curve according to the description in
Section 5.2. Then, we apply a standard thin-shell model defined
over a surface that is subject to fixed boundary constraints:

arg min
x

Einplane(x) + αEbend(x), (7)

where Einplane penalizes in-plane stretching, Ebend penalizes bend-
ing, and α is the energy weight. By default, we set α = 0.1 to prior-
itize Einplane. Although any such model would be suitable, we use
the definition of Bouaziz et al. [2014] and the implementation of
ShapeOp [Deuss et al. 2015] for fast performance.

To measure this deformation energy, we must define a rest
shape for the surface patch. We could use a hole-filling algorithm
to generate an initial surface that spans the boundary loop, but
complex boundaries often yield poorly behaved or low-quality tri-
angle meshes. Instead, we use a default rest shape for all boundary
loops, namely a circular patch that is much smaller than the input
boundary. This forces a large stretching deformation to meet the
target boundary; coupled with a de-emphasized bending energy
(e.g., α = 0.0), this encourages a smooth surface that approximates
a minimal surface. By adjusting α , it is possible to deviate from
this behavior to produce a wide range of surface patches.

5.2 Lines

Line skeletons are represented by a sequence of 3D points, which
can form any open, non-branching path or simple closed loop (if
the endpoints are identical). Along non-smooth edge chains, neigh-
boring vertices are connected by straight lines. Each smooth edge
chain is interpolated to form a natural cubic spline that passes
through the input points with C2 continuity everywhere. We use
natural cubic splines, because they are simple, intuitive, and fa-
miliar, thanks to their widespread use in other modeling tools. To
address concerns that are specific to cellular metamaterial design,
we adjust the standard spline solver to permit (1) C2 continuity
along closed loops and (2) curves that tile smoothly across a pe-
riodic boundary. We address ill-defined curves (with fewer than
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Table 1. Node Types and Their Inputs. Brackets Around an Input Indicate that there can be Multiple Nodes

of the Same Type Fed into the Given Node

four vertices) by computing a quadratic spline (three vertices) or a
straight line (two vertices).

5.3 Spatially Varying Thickness

To control how each skeletal element should be instantiated as
a volumetric object, we include a spatially varying thickness
function over the element’s domain. This function is given by
sparse input: the user specifies the thickness at a few sample
points, and then these values are interpolated over the full domain.
The values are computed and stored w.r.t. a simple parametriza-
tion of the domain rather than actual vertex positions along the
skeletal element. For lines, we use a 1D parametrization γ (t)
for t ∈ [0, 1]. The full thickness profile is linearly interpolated
from the provided sample points. For surfaces, which have
disc-topology, we define thickness w.r.t. a UV-
domain computed via the as-rigid-as-possible
parameterization in libigl [Jacobson et al.
2018; Liu et al. 2008]. Then, as shown in the
inset, we interpolate the thickness by treating
each sample point (white dot) as a handle and
computing bounded biharmonic weights over
the domain [Jacobson et al. 2011].

6 PROCEDURAL GRAPH FOR METAMATERIALS

Building atop our skeletal design space, we introduce a procedural
graph that facilitates the full metamaterial design process, from
initial shape specification to material property prediction. We sum-
marize our node types in Table 1, including their inputs, properties,
and requirements. In this section, we expand on the design logic
and implementation for each node.

6.1 Vertex and Edge Chain Nodes

A vertex node is the simplest node in our graph: it places a vertex
at the 3D location given by its “position” property. Vertex nodes
do not accept any input node connections. The next simplest node
is the edge chain, which accepts a set of vertex nodes as input, and
then instantiates a path over these vertices in the traversal order

that is stored as a property of the edge chain node. As discussed,
each edge chain also has a “smoothness” flag that is used by the
subsequent line or surface node(s) to facilitate the variations de-
scribed in Section 5.

6.2 Line Nodes

Our line node accepts a set of edge chains that are continuously

traversable, i.e., the end of one edge chain is the start of another,
such that they form a simple, non-branching path (open or closed).
As discussed in Section 5, the shape of a line is determined by
the smoothness of each constituent edge chain. A line node can
accept any combination of smooth and fixed edge chains, as
long as they are continuously traversable. For more complicated
paths, multiple line nodes must be defined. The spatially varying
thickness function for each line node is given as in Section 5.3.

6.3 Surface Nodes

Our surface node accepts a set of edge chains that form a simple
closed edge loop, over which we instantiate a surface patch. Users
first select a surface type from among mixed minimal, conjugate,
and direct. This selection determines the algorithms used to inter-
pret the boundary and solve for the final surface, as detailed in
Section 5. It also dictates the requirements and properties for the
surface node. For direct surfaces, the user need only provide the
energy weight α (see Section 5.1.2) and a non-degenerate, simple,
closed boundary loop over vertices located anywhere in the FBV.
For conjugate and mixed-minimal surfaces, each
sliding segment must lie on an FBV face. Mixed-
minimal surfaces permit vertices anywhere on an
FBV face (see Table 2, “Deformed H”). Conjugate
boundaries are more restricted to satisfy the prop-
erties of Section 4.1. Specifically, all vertices must
lie on FBV edges and form property-respecting
configurations, as shown in the inset. The bottom
inset is invalid, because the surface normal (blue)
cannot align with the FBV edge as required.

We also have dual surface and associate fam-

ily nodes to explore the families given by Equation (1). This lets
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us capture and explore intermediate surfaces like the gyroid (see
Section 7.1).

6.4 Mirror, Transform, and Group Nodes

To build full translational units from a structure’s FS, we provide
standard geometric transformations such as the mirror node. We
also support translation, rotation, and scaling via the transform

node, as well as the ability to combine a set of skeletal elements
into one unit via the group node. Each of these nodes takes one
or more “skeletons” as input, which may be a line, a surface, or
the output of one of the transformation nodes above. The user
can select whether the transformation is applied to a copy of
the input skeleton (“doCopy”=true) or to the input skeleton itself
(“doCopy”=false).

6.5 Object, CSG Boolean, and Voxel Nodes

To generate volumetric objects, our object node thickens each
skeletal element based on its interpolated thickness profile. First,
we instantiate a regular grid over a unit cube, which will store an
indicator function that tracks whether each grid point is inside or
outside of the object. The grid resolution is a property of the ob-
ject node, along with the desired extrusion method. As suggested
in Section 3, we support two extrusion approaches: spherical and
normal. For spherical extrusion, we densely sample the skeleton
and—for each sample point—we splat a sphere onto the indicator
function grid, using a sphere diameter equal to the sample point’s
prescribed thickness. For normal extrusion, the offsets are applied
along the normal direction at each sample point. For surfaces, we
offset each vertex by one-half of the desired thickness along each
orientation (±) of its normal. For lines, we sweep a scaled circular
cross section along the skeleton to create a tube. These methods are
illustrated in Supplementary Materials. After extrusion, we com-
pute the indicator function for each resulting geometry and union
them together. To preserve tileability, we require identical func-
tion values for each pair of corresponding grid points on opposite
boundary faces. Finally, we perform marching cubes on the indica-
tor function [Lorensen and Cline 1987] to extract the object mesh.

We also provide a CSG Boolean node that supports union, inter-
section, and difference operations on a set of volumetric objects,
as shown in Supplementary Materials. For efficiency, we compute
Boolean operations on the underlying indicator functions for each
object; then we enforce tileability and perform marching cubes as
before.

Finally, we use the indicator function to implement our voxel

node, which creates voxelized meshes suitable for property predic-
tion.

6.6 Metamaterial Property Nodes

As a proof of concept for fully integrated design, we implement
two property prediction nodes: material matrix and phononic
bandgap.

The material matrix node computes the stiffness tensor of
the volumetric structure given by our graph. We implement the
homogenization approach of Panetta et al. [2015] to compute the
equivalent stiffness tensor matrix C , assuming periodic boundary
conditions and a linear elastic material over our voxel mesh. All

Fig. 6. Conjugate surface accuracy. We compare our conjugate TPMS to

the ground-truth Enneper–Weierstraß functions integrated over a unit cell.

The error is the distance between each vertex of our surface and its closest

point on the analytical surface. The average errors are 0.001, 0.001, 0.003,

and 0.002, with maximal errors of 0.005, 0.004, 0.007, and 0.007, respectively.

Fig. 7. Convergence of edge length optimization. We demonstrate

convergence for the four TPMS with the longest optimization times, which

use different FBVs: Schoen I-WP uses a prism, while the others use an

AABB.

linear systems were solved using Intel MKL Pardiso [Schenk
and Gärtner 2004]. We also use C to compute and display the
“material sphere” that illustrates the (an)isotropy of each structure
(Figure 11(c)).

The phononic bandgap node predicts a structure’s ability to pre-
vent the propagation of waves in certain frequency ranges, toward
applications such as frequency filters, beam splitters, waveguides,
and sound/vibration protection devices. The blocked ranges are
known as bandgaps, and they are often the result of structural
frequency-filtering mechanisms such as Bragg scattering and local
resonances. We predict the bandgap using the approach of Åberg
and Gudmundson [1997], which generates a set of dispersion curves

showing the structure’s eigenmodes over varying wave vectors
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Fig. 8. Robustness of edge length optimization. Although different ver-

tex positions (red) yield different initial edge lengths, our optimizer consis-

tently converges to the same TPMS patch, even across different FBVs.

(Figure 12, light blue). We process these curves in search of horizon-
tal bands through which no curves pass (Figure 12, grey rectangles).
Each such area is a bandgap, as it indicates that the given frequency
range has no viable transmission path through the structure.

7 RESULTS

We implement our procedural graph in C++, with an OpenGL-
based GUI for interactive design. We performed all experiments
on Ubuntu 20.04 using an AMD Ryzan 5950X CPU (16 cores) with
64 GB RAM.

7.1 Conjugate Surface Construction

To evaluate our CSCM, we reproduce a variety of TPMS whose
FS are given by free boundary problems, including the popular
Schwarz P, Neovius, and Schoen I-WP structures. As shown in
Figure 6, our surfaces exhibit strong agreement with the ground-
truth TPMS given by the Enneper–Weierstraß functions integrated
over a unit cell. We obtained each ground-truth surface via a pub-
licly available Mathematica notebook [Weber 2018a, b, c, d], from
which we extracted and uniformly rescaled exactly one transla-
tional cell of unit size.

Figure 6 also shows our accurate reproduction of the gyroid,
which is one of very few TPMS that do not contain any straight
or planar symmetry lines. This seems to render the gyroid incom-
patible with our method. However, the gyroid is a known member
of the Schwarz P/D associate family: assuming that D occurs at
ϕ = 0, the gyroid occurs at ϕ ≈ 38 [Karcher 1989]. Thus, we can
construct a patch of the gyroid by creating the P and D structures
via our CSCM, then interpolating via the associate family node.

We ensure that our optimization converges reliably for all of our
examples, including those in Table 2 and hundreds of randomly
generated structures (Figure 9). Even the most intensive structures
in Table 2 converge within 80 iterations, as shown in Figure 7.
Moreover, Figure 8 demonstrates that our algorithm’s output is
stable w.r.t. the input vertex positions and initial edge lengths l init.
The only difference is that more accurate initial guesses permit
faster convergence, as evidenced by Tables 2 and 4.

7.2 Representing Established Cellular Structures

We use our procedural graph to recreate structures from litera-
ture that span all of our target classes. As a simple test, we first
re-implement the exhaustive truss-based exploration strategy of
Panetta et al. [2015] and arrive at the same collection of 1,205
valid topologies in our representation. We also recreate a num-

ber of other structures found in literature. Tables 2 and 3 show
the final geometry for a selection of our structures, which were
created from scratch in our GUI, following the design process of
Section 3.3. Table 4 gives a detailed list of nodes used for each
structure, along with the computation time required to evaluate
our full procedural graph. The minimal, median, average, and max-
imal number of nodes used is 12, 16, 19.1, and 34, respectively. This
demonstrates that our graph is both lightweight and versatile. Fur-
thermore, the computation time shown in column t demonstrates
that our system is able to quickly produce the final structure from
the sparse graph input, with median, average, and max time costs
being 0.72, 2.31, and 21.91 s, respectively. Thus, our method can be
used to create and modify metamaterials at interactive rates.

7.3 User Study

To evaluate the expressiveness, compactness, and ease-of-use of
our approach, we invited 10 participants to model several meta-
materials using our procedural graph. We sought participants
with varying degrees of expertise in metamaterials, 3D modeling,
and minimal surface theory. Many participants self-identified as a
novice in one, two, or all three domains, but nobody identified as
an expert in all domains.

Procedure. The study generally took 3 to 4 hours per user and
contained five stages: (1) a pre-survey; (2) a brief presentation
introducing the project goal and our representation; (3) a guided
modeling session to practice conceptualizing/building structures
using our representation; (4) an independent modeling session, in
which the participant constructed six target structures; and (5) a
post-survey. Supplementary Materials provides a detailed account
of each stage, as well as the participants’ responses/results. As
noted to our users, the study is primarily concerned with the in-
tuitiveness and flexibility of the procedural graph representation,
not the interactive tool.

Our primary experiment occurred in stage (4), as participants
independently modeled six structures given by target 3D meshes.
The target structures spanned all of our major classes, so we could
examine our method’s overall expressivity and ease-of-use. To
reduce undue burden on the participants, we asked them to focus
on reproducing each target’s main structure rather than precisely
inferring continuous parameter values for, e.g., thickness or vertex
positions.

Main Results. All 10 users successfully reproduced all six struc-
tures, independent of prior experience. A subset of the structures
are shown in Table 5, along with statistics about the time and num-
ber of nodes required to represent them. Of the 60 total modeling
tasks, 56 (93%) were completed in ≤30 minutes and 45 (75%) were
completed in ≤20 minutes. In the post-survey, users also indicated
high levels of confidence that they could implement unseen struc-
tures of the various classes in the future. Moreover, the overwhelm-
ing majority of users (90%) agreed that the process of modeling
a diverse set of metamaterials would be easier/more intuitive in
terms of our proposed procedural graph than it would be in terms
any single other representation.

Curved shells presented the largest challenge, as users uni-
formly reported the lowest degree of confidence in—and highest
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Table 2. TPMS Boundary Loops. We Represent Several Well-Known TPMS using a Small Set of Vertices and a Single Boundary Loop. Column “S”

Indicates the Name and Type of Each Structure: A Blue Label Indicates a Direct Surface, Green Indicates a Mixed-Minimal Surface, and White

Indicates a Conjugate Surface. For Each Structure, We show the Boundary Loop and Bounding Planes (“vtx/edge”), the Generated Surface Patch

(“patch”), and the Final Volumetric Structure (“obj”)

degree of difficulty with—these structures. Nevertheless, all users
succeeded in the curved shell tasks, and 90% of them expressed
that it would have been more difficult or impossible to represent
these structures using any other approach. This is particularly

true of Hao Chen’s and Wei’s TPMS, as neither structure cur-
rently has a trigonometric approximation; this typically renders
them inaccessible to designers, but our representation provided
novice access to both. Moreover, the presence of a traditionally
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Table 3. Varied Cellular Metamaterials. We Represent a Variety of Metamaterial Architectures, Including

Some from Literature and Others of Our Own Creation

challenging period problem (see Section 4.1) in Wei’s genus 4 was
a non-issue for our users; in fact, this structure required the low-
est average modeling time of all. Overall, this user study confirms
the expressiveness, compactness, and ease-of-use of our proposed
representation, as even novice modelers can rapidly and faithfully
realize a wide range of design intents.

8 APPLICATIONS

Armed with our procedural graph representation, we envision sev-
eral exciting possibilities for future metamaterial exploration.

8.1 Automated Structure Generation

Due to its compact form, our representation is conducive to au-
tomatic exploration. As a proof of concept, we devise simple ex-
ploration strategies for structures in two classes: straight trusses

and shellulars. For a detailed explanation of these strategies, see
the Supplementary Materials. Our truss exploration can generate
a virtually unlimited number of structures due to the relatively un-
constrained space for trusses. Valid shellular graphs are consider-
ably more restricted, but our methods still generate hundreds of
orthotropic and general asymmetric shellular structures. In partic-
ular, we obtained 1,000 direct structures in approximately 1 hour,
498 conjugate structures in 4 hours, and 500 general asymmetric
structures in 3 hours. This exploration returned an enormous col-
lection of unstudied direct shellulars and a mix of established and
novel TPMS shellulars, as shown in Figure 9. The presence of es-
tablished structures confirms that our representation encompasses
critical regions of the cellular metamaterial design space, while
the presence of novel structures indicates its potential for inno-
vation. Our structures are also tilable by construction and (in all
observed cases) physically realizable via inkjet-deposition additive
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Table 4. Procedural Graph Statistics. For Each Structure, We List the Total Number of Nodes (#all) As Well As a Breakdown by Node Type: Vertex (#vtx);

Edge (#e); Line (#l); Surface/Dual Surface (#s), Transformation/Mirror/Group (#T), Object (#o), and Voxel (#vox). We Also show Structure Type (“type”): “c”

Refers to Conjugate Surface, “d” Denotes Direct Surface, “m” is Mixed Minimal Surface, and “l” is for Lines. Finally, We List the Time Cost to Evaluate Each

Graph (t [s])

structure #vtx #e #l #s #T #o #vox #all type t

Schwarz P (1) 6 1 0 1 3 1 1 13 c 0.44
Wei’s genus4 (1) 7 1 0 1 3 1 1 14 c 5.99
Neovius (1) 4 1 0 1 8 1 1 16 c 0.72
Schoen S’-S” (1) 7 1 0 1 3 1 1 14 c 14.16
Schoen I-WP (1) 6 1 0 1 4 1 1 14 c 3.20
Deformed Schoen S’-S” (1) 7 1 0 1 3 1 1 14 c 21.91
Steßmann (1) 6 1 0 1 3 1 1 13 d 1.33
Schwarz D (1) 6 1 0 1 2 1 1 12 d 0.72
Schwarz CLP (1) 6 1 0 1 2 1 1 12 d 0.82
Schoen R2 (1) 8 4 0 1 3 1 1 18 m 1.46
Hao Chen’s oΔ/tΔ (1) 6 4 0 1 3 1 1 16 m 0.61
Deformed H (1) 10 4 0 1 5 1 1 22 m 0.72
Gyroid (1) 6 1 0 2 16 1 1 27 c 0.57
Schwarz P+Neovius (2) 13 2 0 2 9 1 1 28 c 1.56
Schwarz P+Cubic Open (2)† 13 2 0 2 6 1 1 25 c+d 0.89
Schwarz P+Cubic Closed (2) 10 2 0 2 6 1 1 22 c+d 0.93
assembled (3) 7 1 1 0 9 1 1 20 l 0.28
assembled2 (3) 4 2 1 0 6 1 1 15 l 0.21
assembled3 (3)† 5 2 1 0 5 1 1 15 l 0.28
octet (4) 3 1 1 0 5 1 1 12 l 0.24
auxetic3d (5) 6 2 2 0 5 1 1 17 l 0.25
twist-tilable (6) 8 5 5 0 13 1 1 33 l 0.23
twist-tilable-bezier (6)† 9 5 5 0 13 1 1 34 l 0.25
bandgap (7) 6 3 3 0 14 3 1 30 l 1.18
3D FCC lattice(8) 6 3 3 0 3 3 1 19 l 0.43
anti-chiral (9) 4 2 1 0 4 1 1 13 l 0.18
star-shaped structure (10) 5 2 1 1 4 1 1 15 l+d 0.77
non-manifold surface † 8 3 0 3 4 1 1 20 d 1.32
polyhedral cell (11) 6 1 0 1 3 1 1 13 d 0.66
our composition † 12 4 4 1 5 3 1 30 l+c 2.03
6-hole BCC (12) 4 2 3 0 12 5 1 27 l 7.23

†Our modification/design
(1)[Weber n. d.]
(2)[Chen et al. 2019]
(3)[Jenett et al. 2020]
(4)[Deshpande et al. 2001]
(5)[Hsueh et al. 2019]
(6)[Frenzel et al. 2017]
(7)[Muhammad and Lim 2021]
(8)[Lu et al. 2017]
(9)[Wu et al. 2019]
(10)[Mizzi et al. 2018]
(11)[Han et al. 2015]
(12)[Babaee et al. 2013].

Table 5. User Study Results. For Each of the Six Modeling Tasks, We Show Two Randomly Selected User-Created Structures

(All Structures are Shown in the Supplement). The Construction Time and Number of Nodes Used for Each Structure are Reported

As the “avg (min, max)” Measured Across All 10 Participants

manufacturing.2 Figure 10 shows photographs for four of our fab-
ricated structures, which each feature a 3 × 3 × 3 tiling of our unit
cell, with a total size of 9 cm in each dimension and a minimum
wall thickness of 1 mm.

2https://inkbit3d.com/.

8.2 Material Properties

Our work also presents opportunities for performance-driven de-
sign and shape optimization, as even our randomly generated
structures exhibit a wide range of interesting material proper-
ties. We consider predictions for the stiffness tensor and phononic
bandgap, using a base material with Young’s modulus E = 1 Pa,
mass density ρ = 1 kg/m3, and Poisson’s ratio ν = 0.45.
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Fig. 9. Randomly generated minimal surfaces. Using our simple random exploration method over boundary loops, we have generated a large set of

minimal surfaces, including both novel structures and classic TPMS such as the Schwarz P structure (bottom row, third column).

Fig. 10. Fabricated structures. We fabricated four structures based on

our conjugate surface ((a) and (b)), direct surface (c), and truss-based

(d) methods. We selected (a), (b), and (d) to maximize the ratio between

Young’s modulus and density, subject to the constraints of the 3D printer

(≥1 mm thickness). Structure (c) is the result from Figure 11(c) (bottom).

The middle photo shows the scale of our 3D-printed structures relative to

the hand of an adult male.

8.2.1 Stiffness Tensor. We use homogenization to compute the
stiffness tensors for all of our established and randomly generated
structures. To generate each input mesh, we run voxelization with
a grid resolution of 1003, such that each voxel is of size 0.013.

We begin by examining the homogenized material properties for
all of the orthotropic structures with thickness 0.02 (Figure 11(a)).
The homogenization of an orthotropic material yields a 6×6 matrix
C of the following form:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0

0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

After invertingC , we can extract standard material properties such
as Ei , which is the Young’s modulus along axis i ∈ {x ,y, z}. Fig-
ure 11(a) plots each structure’s density against its average Young’s
modulus, Eavg = (Ex + Ey + Ez )/3. Even from our undirected
topological exploration, we are able to cover a broad region of this
space and begin observing trends between the classes. For example,
conjugate shellulars generally yield the best Eavg for a given den-
sity, but direct shellulars exhibit broader property coverage due to
their less-constrained skeleton space. Furthermore, our coverage
surpasses that of the established structures for a given density.

To examine the role of spatially varying thickness, we gener-
ate four additional variations of the truss structures: increasing
each beam’s uniform thickness to 0.04 or 0.08 and increasing each
beam’s center thickness to 0.04 or 0.08 (to mimic the well-known
Pentamode [Milton and Cherkaev 1995]). As shown in Figure 11(b),
the ratio between Eavg and density remains near constant as thick-
ness increases. We observed a similar relationship for shellulars.

Finally, we examine the C matrices for our asymmetric struc-
tures, which can exhibit non-zero entries in the off-diagonal
blocks. These entries yield interesting anisotropic material behav-
iors. Figure 11(c) shows this effect for two of our most extreme
structures.

8.2.2 Phononic Bandgap. We evaluate the bandgap for half of
our randomly generated symmetric shellular structures and select
the structure with the largest gap (Figure 12, top). We also repro-
duce the state-of-the-art structure proposed by Muhammad and
Lim [2021] (Figure 12, bottom) and compare the dispersion curves
for each. The latter design is far superior, which indicates that we
are unlikely to solve this task via uninformed exploration in
a subset of the design space (e.g., only shellular structures).
However, our concise representation of the state-of-the-art design
suggests that an intelligent search over our full procedural graph
space could reveal structures with comparable or even superior
bandgaps.

9 LIMITATIONS AND FUTURE WORK

Although our approach covers a wide variety of metamaterial ar-
chitectures, it has several limitations. For example, our thicken-
ing operations do not necessarily preserve separation between fea-
tures, which may cause issues for, e.g., interpenetrating lattices
[White et al. 2021] or kirigami structures with cuts. Our thickening
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Fig. 11. Stiffness tensor experiments. Our preliminary studies suggest broad coverage of the stiffness tensor space. All subfigures assume a uniform

baseline thickness of 0.02 (indicated by “x1”). (a) We plot density vs. average Young’s modulus (Eavд ) for structures in five classes: “truss-random,” “direct-

random,” and “conjugate-random” are from our random exploration strategies; “truss-tet-topologies” are the topologies from Panetta et al. [2015]; and

“existing” are other structures from literature. We show the convex hull of each class (except “existing”) along with structures that exhibit higher Eavд

and/or lower density than comparable known structures. (b) We explore the effect of thickening on density vs. Eavд . Structures marked “x2”/“x4” are

uniformly 2×/4× the baseline thickness; for “z2”/“z4,” the beam centers are 2×/4× the baseline. As thickness increases, both density and Eavд increase in

a near-linear relationship. (c) Our asymmetric direct surfaces exhibit strong anisotropy due to their non-zero entries in all 21 degrees of freedom (DOFs)

of C . The largest absolute entry in the off-/on-diagonal 3× 3 block of C was exhibited by the top/bottom structure, respectively. The material spheres show

their omni-directional strain–stress relationship, where color and distance to the center show the strain response to uniform stress in that direction.

Fig. 12. Selected phononic bandgaps. We show the dispersion curves

for two structures: (top) the randomly-generated shellular with the largest

predicted bandgap and (bottom) the state-of-the-art metamaterial for

phononic bandgap [Muhammad and Lim 2021]. Each dispersion curve plot

shows normalized frequency values on the y-axis; the x -axis represents

wave vectors along the irreducible first Brillouin zone for cubic-symmetric

structures. Each vertical slice of the plot shows the structure’s eigenmodes

under a particular wave vector; thus, any horizontal band without curves

(gray) indicates a bandgap, i.e., a frequency range with no mode of trans-

mission. Wide gaps in low frequency ranges are the most desirable.

operations are also presently limited to simple sphere- or normal-
extrusion with spatially varying thickness. We could provide more
flexibility via other solidification routines, such as user-defined
cross-section profiles for generating triangular prisms or I-beams.
To mitigate areas of high stress concentration, we could also intro-
duce blending methods that control the shape of junctions between
abutting skeletal elements. The convex-hull-restricted blending
approach [Colli Tozoni et al. 2020; Panetta et al. 2017] offers one

such solution for beam structures, which could be integrated into
our system by adding blending parameters on the vertices of line
skeletons. However, this approach would need to be generalized
to accommodate surfaces, solid bulks, and subtractive Boolean op-
erations, as well as skeleton intersections that occur away from
user-defined vertices.

Our work is also presently limited to a single cell of a regular
metamaterial residing in a unit cube. We could expand this scope
by exploring additional tilable cells such as hexagonal prisms or
rhombic dodecahedral honeycombs. We could also integrate rou-
tines for stochastic porous structures like foams or for partitioning
our graph into explicit, reusable subgraphs that could facilitate the
design of complex hybrid structures or multi-scale designs [Rao
et al. 2019; Zhang et al. 2021]. Finally, future work could consider
ways to smoothly connect a set of distinct cells to facilitate the
construction of larger volumes with, e.g., functional grading [Al-
Ketan and Abu Al-Rub 2021; Hu et al. 2022b] or smooth transitions
between structures of different classes (e.g., trusses to shells).

In a mathematical vein, we could also explore the limits of our
CSCM approach w.r.t. the period problem discussed in Section 4.1.
If robust, then our approach could facilitate the discovery of new
examples or perhaps even a general solution for the problem of
handle insertion. Alternatively, we could incorporate, e.g., min-

imal twin surfaces [Chen 2019] or Willmore surfaces [Willmore
1965], which are a superset of minimal surfaces with constant mean
curvature. In conjunction with volume-preserving metrics, this
could lead to a host of interesting new structures.

We also look forward to devising optimization schemes over
our representation to permit the automatic discovery and inter-
active user-in-the-loop design of metamaterial structures with
extremal properties. Toward this goal, our system would benefit
from the development of a robust, principled GUI and expanded
simulation capabilities, including nodes for, e.g., non-linear
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simulators, stress–strain curves, and tetrahedralization. It would
also be interesting to explore whether we could perform analysis
and/or property prediction directly on our graph representation
to permit faster exploration and optimization techniques free of
meshing- or simulation-related bottlenecks and sensitivities.

10 CONCLUSION

We have presented a simple, compact procedural graph for the
construction of a wide range of formerly disparate cellular meta-
material architectures: trusses, solid bulks, and shells, including
TPMS-based structures. Within this, we have also developed
a practical, easy-to-use implementation of a state-of-the-art
construction method for TPMS and characterized a simple,
unified design space for a wide range of thickness-annotated
metamaterial skeletons. We have demonstrated our representa-
tion’s accuracy and generality by expressing a large collection of
structures found in mechanical engineering and material science
literature using only a few graph nodes. We have also verified our
representation’s intuitiveness through an extensive user study.
Finally, we have demonstrated our method’s potential w.r.t. a
number of exciting applications and future works by generating
thousands of structures with considerable diversity in terms of
both visual structure and material properties.
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