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Kirigami-inspired metamaterials are attracting increasing interest
because of their ability to achieve extremely large strains and
shape changes via out-of-plane buckling. While in flat kirigami
sheets, the ligaments buckle simultaneously as Euler columns,
leading to a continuous phase transition; here, we demonstrate
that kirigami shells can also support discontinuous phase tran-
sitions. Specifically, we show via a combination of experiments,
numerical simulations, and theoretical analysis that, in cylindri-
cal kirigami shells, the snapping-induced curvature inversion of
the initially bent ligaments results in a pop-up process that first
localizes near an imperfection and then, as the deformation is
increased, progressively spreads through the structure. Notably,
we find that the width of the transition zone as well as the stress
at which propagation of the instability is triggered can be con-
trolled by carefully selecting the geometry of the cuts and the
curvature of the shell. Our study significantly expands the abil-
ity of existing kirigami metamaterials and opens avenues for the
design of the next generation of responsive surfaces as demon-
strated by the design of a smart skin that significantly enhances
the crawling efficiency of a simple linear actuator.
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K irigami—the Japanese art of cutting paper—has recently
inspired the design of highly stretchable (1–8) and mor-

phable (9–17) mechanical metamaterials that can be easily
realized by embedding an array of cuts into a thin sheet. An
attractive feature of these systems is that they are manufactured
flat and then, exploit elastic instabilities to transform into com-
plex 3D configurations (2–6, 13). Remarkably, the morphology of
such buckling-induced 3D patterns can be tuned by varying the
arrangement and geometry of the cuts (2–4) as well as the load-
ing direction (13). However, in all kirigami systems proposed to
date, the buckling-induced pop-up process occurs concurrently
through the entire system, resulting in a simultaneous shape
transformation.

The coexistence of two phases has been observed at both the
microscopic and macroscopic scales in a variety of systems, includ-
ing phase-transforming materials (18–22), dielectric elastomers
(23, 24), and thin-walled elastic tubes (25, 26) (Movie S1). While
these systems are very different in nature from each other, they
all share a nonconvex free energy function that, for specific con-
ditions, has two minima of equal height. When such a situation is
reached, the homogeneous deformation becomes unstable, and a
mixture of two states emerges. The new phase initially nucleates
near a local imperfection and then, under prevailing conditions,
propagates through the entire system (21, 24–26).

Here, we demonstrate via a combination of experiments and
numerical/theoretical analyses that kirigami structures can also
support the coexistence of two phases, the buckled one and the
unbuckled one. Specifically, we show that, in thin cylindrical
kirigami shells subjected to tensile loading, the buckling-induced
pop-up process initially localizes near an imperfection and then,
as the deformation is increased, progressively spreads through
the cylinder at constant stress. We find that the curvature of the
cylinder is the essential ingredient to observe this phenomenon,
as it completely changes the deformation mechanism of the

hinges. In kirigami sheets, the initially flat hinges buckle out of
plane, leading to a monotonic stress–strain relationship for the
unit cell. By contrast, in kirigami shells, the initially bent liga-
ments snap to their second stable configuration, resulting in a
nonmonotonic stress–strain curve typical of phase-transforming
materials (18–22).

Experiments
We start by testing under uniaxial tension a kirigami flat sheet
and a corresponding cylindrical shell. Both structures are fabri-
cated by laser cutting triangular cuts arranged on a triangular
lattice with lattice constants l = 12 mm and γ=π/3 separated
by hinges with width δ= l/16 (resulting in a rectangular unit
cell with width L= 2l cosπ/6 and height H = 2l sinπ/6) into
polyester plastic sheets (Artus Corporation) of thickness t =
76.2µm with Young’s modulus E = 4.33 GPa and Poisson’s
ratio ν= 0.4 (Fig. 1A). The flat kirigami sheet comprises an array
of 2× 20 cuts, while the cylindrical shell has 8× 20 cuts and is
created by bending an initially flat perforated sheet into a cylin-
der with radius r ∼nL/(2π) (n denotes the number of unit cells
along the circumference of the cylinder) (Fig. 1B) and gluing the
two overlapping edges with a thin adhesive layer (SI Appendix,
section 1 and Movie S2 have fabrication details).

In Fig. 1 C and D, we show snapshots of the kirigami sheet
and kirigami shell at different levels of applied deformation. We
find that the responses of the two structures are remarkably dif-
ferent (Movie S3). In the kirigami sheet at a critical strain, all
triangular features simultaneously pop up, forming a uniform 3D
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Fig. 1. (A) Schematic of a kirigami structure that comprises an array of tri-
angular cuts. The unit cell has width L and height H, and it is highlighted in
gray. (B) Schematic of a kirigami cylindrical shell comprising n = 8 unit cells
along the circumference. (C) Experimental images of a kirigami sheet with a
triangular pattern characterized by δ/l = 0.0625 (with l = 12 mm) at differ-
ent levels of deformation. The pop-up process occurs concurrently through
the entire system. (D) Experimental images of a kirigami sheet fabricated by
rolling a sheet with a triangular pattern characterized by δ/l = 0.0625 (with
l = 12 mm and n = 8 unit cells along the circumference) at different levels
of deformation. The pop-up process initiates at the top end of the sample
and then, spreads toward the bottom one as ε̄ is increased. The thickness of
all kirigami structures is t = 76.2 µm.

textured surface that becomes more accentuated for increasing
deformation (Fig. 1C). By contrast, in the cylindrical kirigami
shell, the pop-up process initiates at the top end of the sample
and then, spreads toward the other end as the applied deforma-
tion is increased (Fig. 1D). Note that the pop-up process in our
shells typically starts at one of the ends of the shell, since these
act as imperfection. As a matter of fact, a local reduction in the
size of the hinges has to be introduced to cause the propaga-
tion to start from a different location (SI Appendix, Fig. S7 and
Movie S9).

Next, to better characterize the response of our structures,
during the tests, we monitor black circular markers located at the
base of the triangular cuts (Fig. 1 C and D) and use their position
to determine both the applied strain, ε̄, and the local strain in
longitudinal direction for the i th row of cuts, εi , as

ε̄=
zq − zp
Zq −Zp

− 1, εi =
zi+1− zi
Zi+1−Zi

− 1, [1]

where zi and Zi denote the positions of the i th marker in
the deformed and undeformed configurations, respectively. We
choose p = 3 and q = 18 to minimize boundary effects. More-
over, we use a custom laser profilometer and track the deforma-
tion of a horizontal line passing through the hinges at different
levels of applied deformation.

In Fig. 2 A and B, we report the evolution of the local strain
εi as a function of ε̄ for the kirigami sheet and shell, respectively.
In full agreement with our previous observations, we find that, in
the kirigami sheet, the local strain increases uniformly through
the structure and is always very close to the applied deformation

(i.e., εi ∼ ε̄ ∀ i) (Fig. 2A). Differently, the contour map for the
kirigami cylindrical shell shows a nonvertical boundary between
popped/open (yellow in Fig. 2B) and unpopped/closed (blue in
Fig. 2B) regions (Fig. 2B)—a clear signature of sequential open-
ing. Furthermore, the constant slope of such boundary indicates
that the pop-up process propagates at constant rate of applied
deformation (SI Appendix, section 2).

To gain more insight into the physics behind the different
behavior observed in the kirigami sheet and kirigami shell, we
then investigate the deformation mechanism of their hinges. By
inspecting their 3D-scanned profiles (Fig. 2 C and D), we find
that they deform in a very different way. In the kirigami sheet,
the hinges are initially flat and act as straight beams (5, 13);
for a critical level of applied deformation, they buckle and sub-
sequently bend out of plane. By contrast, in the kirigami shell,
the initially bent hinges behave as bistable arches (27) and snap
to their second stable configurations, which are characterized
by curvature inversion. This observation is fully consistent with
the results of Figs. 1 and 2, since snapping is always accompa-
nied by a highly nonlinear stress–strain response, which is typical
of phase-transforming materials (18–22). As a matter of fact,
while elastic structures comprising arrays of beams that buckle
under the applied load have been shown to display homogeneous
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Fig. 2. (A and B) Evolution of the local strain εi as a function of ε̄ for the (A)
kirigami sheet shown in Fig. 1C and (B) the kirigami shell shown in Fig. 1D.
(C and D) Projection in the xy plane of a line passing through hinges (such
lines are indicated in orange in A and B) as reconstructed using a custom
laser profilometer for (C) the kirigami sheet and (D) the kirigami shell. The
deformation of the hinges is highlighted in orange. (E) Experimental stress–
strain curves for the kirigami sheet and the kirigami shell considered in Fig.
1. Note that the amplitude of the peak observed for the kirigami shell is
correlated to the size of imperfection that triggers the pop up (SI Appendix,
Fig. S20).
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Fig. 3. (A) FE snapshots of flat and rolled unit cells (characterized by δ/l = 0.0625 with l = 12 mm) at ε̄= 0 and 0.1. (B) Strain–stress curves of unit cells with
δ/l = 0.0625 as a function of n. (C) Strain–stress curves of unit cells with n = 8 as a function of δ/l. (D) Stress–strain response of unit cells with δ/l = 0.0625
and n = 8. In the plot, we highlight the energy barrier S1, the steady-state propagation stress σp, and the critical strains εp1, εp2, and εp3. The thickness of
all kirigami unit cells is t = 76.2 µm.

pattern transformations (13, 28), sequential events are typically
observed in systems based on snapping units (29–31).

Finally, in Fig. 2E, we compare the stress–strain curves of the
kirigami sheet and the kirigami shell. We find that the response
of the kirigami sheet is typical of buckling-based structures (32)
and that it is characterized by an initial linear regime (during
which all hinges bend in plane) followed by a plateau stress
(caused by the homogeneous buckling-induced pop-up process).
The cylindrical kirigami shell also exhibits these two regimes, but
the transition between them is more abrupt and characterized by
a sharp load drop. At the peak, a small portion of the kirigami
shell near the top end pops up, causing the unloading of the rest
of the structure and a drop in stress. Subsequently, when the lig-
aments of the buckled region start to be stretched and become
resistant to additional deformation, the pop-up process spreads
sequentially through the entire structure, and the stress reaches a
steady-state value σp = 83.5 kPa. Finally, after all units are fully
popped up at ε̄∼ 0.22, the stress starts to rise again because of
additional stretching of all hinges.

Modeling
Having understood how the imposed curvature affects the defor-
mation mechanism as well as the response of our kirigami
structures, we now use a combination of numerical and analytical
tools to quantify this effect. To begin with, we conduct nonlin-
ear finite element (FE) within Abaqus/Standard to investigate
the effect of both the ligament width δ and the curvature 1/r
(which is proportional to 1/n) on the response of unit cells sub-
jected to uniaxial tension (SI Appendix, section 4). We find that,
for δ/l ∈ [0.025, 0.15] and n ∈ [4, 24], the applied deformation
always triggers a buckling instability that induces the pop up of
the triangular features (Fig. 3A and Movie S7). However, the
stress–strain response is found to be significantly affected by both
δ and n (Fig. 3 B and C). For large values of n (i.e., for small
curvatures), all unit cells are characterized by monotonic stress–
strain curves (Fig. 3B) irrespective of δ/l . Differently, below
a critical n , the stress–strain response becomes nonmonotonic
characterized by a peak, a subsequent drop in load, and final
stiffening. Furthermore, we find that, by either decreasing n (at
constant δ/l) (Fig. 3B) or increasing δ/l (at constant n) (Fig. 3C),
the peak becomes more accentuated and is eventually followed
by a sharp drop.

At this point, we want to emphasize that the nonmono-
tonic up–down–up behavior observed for most of our rolled
unit cells is typical of elastic structures supporting propagative
instabilities (25, 26). Remarkably, it has been shown that the
Maxwell construction (33) can be applied to such stress–strain
curves to determine several key parameters that characterize
the behavior of our curved kirigami shell (25, 26). Specifically,

by equating the area of the two lobes formed by the σ(ε)
curve (i.e., by imposing S1 =S2) (Fig. 3D), we can identify
(i) the propagation stress σp , (ii) the energy barrier S1, and
(iii) the critical strains εp1, εp2, and εp3 (Fig. 3D). For ε̄ <
εp1, the structure deforms homogeneously, and all triangular
features are unpopped, whereas for εp1< ε̄< εp3, the pop-up
process initiated at the top end of the sample spreads toward the
other end.

While Maxwell construction enables us to easily determine
several parameters, it does not provide any information on the
width and the shape of the transition zone. This motivates the
derivation of a more detailed model based on a 1D array of
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Fig. 4. (A) Schematic of our model comprising a 1D array of nonlinear
springs. The blue dashed lines indicate the strain gradient interactions that
we account for. (B) Comparison between the strain distribution predicted
by our model and measured in experiments for the cylindrical kirigami shell
shown in Fig. 1B. (C) Phase diagram of the width W of the transition zone
as predicted by our model. (D) Phase diagram of the energy barrier of the
kirigami shells with triangular cut pattern. S1 (shaded green area in Fig.
3D) was normalized by the total energy required for phase transition [i.e.,
σp(εp3− εp1)] obtained from 441 unit cell FE simulations. The thickness of
all kirigami structures is t = 76.2 µm.
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Fig. 5. (A) Experimental images of a kirigami cylindrical shell with n = 20
and linear cuts characterized by δ/l = 0.2 (with l = 12 mm) at ε̄' 0.2. (B)
Experimental images of a kirigami cylindrical shell with n = 20 and orthogo-
nal cuts characterized by δ/l = 0.08 (with l = 6 mm) at ε̄' 0.1. The thickness
of kirigami shells is t = 76.2 µm.

N nonlinear springs (Fig. 4A) in which the response of the i th
element is described as

Fi(ui , ui+1) =nLt ×σ (εi)=nLt ×σ
(ui+1− ui

H

)
, [2]

where σ(εi) is the nonlinear stress–strain response of the unit
cell and ui = zi −Zi (Fig. 4A). We then write the strain energy
of the system when subjected to a constant force Fp =σpnLt as

Π=U −Fp(uN+1− u1)

=

N∑
i=1

nLt

∫ ui+1−ui

0

σ
(ui+1− ui

H

)
d(ui+1− ui)

−Fp(uN+1− u1) +

N∑
i=2

1

2
nLtG (ui+1− 2ui + ui−1)2,

[3]

where the last term (and the coefficient G) is introduced to
capture the effect of the strain gradient (34–36), which signifi-
cantly affects the response of our kirigami structures given the
strong coupling between their unit cells (SI Appendix, section 4).
It follows that the equilibrium equations are given by

σ (εi)−σ (εi−1)−G (εi+1− 3εi + 3εi−1− εi−2) = 0,

for i = 3, . . . , N − 1
, [4]

where εi is defined in Eq. 1.
Next, we take the continuum limit of Eq. 4, retain the nonlin-

ear terms up to the third order, and integrate it with respect to Z
to obtain

GH 2 d2ε

dZ 2
=σ(ε)−σp , [5]

where Z denotes the initial coordinate along the longitudinal
direction and ε(Z ) is a continuous function of Z . We have
assumed that, at Z →−∞, the unit cells are unpopped and sub-
jected to a strain εp1. Eq. 5 is the continuum-governing equation
for our kirigami structures, and given a stress–strain curve of the
unit cell σ(ε), it can be numerically solved to obtain the strain
distribution ε(Z ) within the structure as a function of the applied
strain. To test the relevance of our model, in Fig. 4B, we focus on
the cylindrical kirigami shell of Fig. 1B and compare the evolu-
tion of the strain along its axes as predicted by our model and
measured in experiments at ε̄= 0.06, 0.09, and 0.12. Note that
the model predictions are obtained by numerically integrating
Eq. 5 with σ(ε) predicted by an FE simulation conducted on
the unit cell, σp equal to the Maxwell stress and G = 428 kPa

(SI Appendix, section 4). Moreover, since the solution of Eq. 5 is
translational invariant with respect to Z , the position of the prop-
agation front Z0 at a given applied strain ε can be determined
from the compatibility condition

ε̄=
1

Zq −Zp

∫ Zq

Zp

ε(Z ) dZ , [6]

where p = 3 and q = 18 (Eq. 1). We find that our model accu-
rately captures the shape, width, and amplitude of the transition
zone as well as its position as a function of the applied strain,
confirming the validity of our approach.

Effect of Geometry
While in Fig. 4B, we focus on a specific geometry, it is important
to point out that our model can be used to efficiently character-
ize the propagation front as a function of the curvature of the
shell, the hinge size, and the arrangement of the cuts. In Fig. 4C,
we focus on kirigami structures with triangular cuts and report
the evolution of the normalized width of the propagation front,
W [which is defined as the width of region in which the strain
changes by 0.9(εp3− εp1)] (Fig. 4B), as a function of δ/l and n .
First, the results of our model indicate that, as the curvature of
the kirigami shell increases (i.e., for larger n), W monotonically
increases so that propagation of instability becomes less and less
visible. In the limit of flat sheets, all unit cells are characterized by
monotonic stress–strain curves, and only homogeneous pop up is
possible (white region in Fig. 4C). Second, we find that, by increas-
ing δ/l , at constant n , the propagation of instabilities becomes

uniform pop-up

propagating pop-up

D

E

F programmed pop-up

st
ar

t

A CB

Fig. 6. (A) Schematic of our patterned kirigami surface. (B and C) Exper-
imental images of the heterogenous (B) kirigami sheet and (C) kirigami
shell at ε̄= 0.1 and 0.2. (D–F) Snapshots of our kirigami-skinned crawlers
with triangular cuts characterized by (D) δ/l = 0.033 (uniform pop up), (E)
δ/l = 0.125 (propagating pop up), and (F) δ/l = 0.125 for the central units
and δ/l = 0.033 for first three units at two ends (programmed pop up).
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Fig. 7. Behavior surface for cylindrical kirigami shells with triangular cuts
characterized by l = 12 mm, δ/l = 0.0625, and t = 76.2 µm. The continuous
sequence of states of equilibrium experienced by the shell on loading corre-
sponds to a curve on the behavior surface. The behavior surface is smooth,
but its projection on n−σ contains two folds and a cusp. For shells with
small curvature (i.e., for large n), the path does not reach the folds (blue
line), and uniform pop ups occur at a critical strain εc associated with out-
of-plane buckling of hinges. By increasing the curvature of the shell, the
path eventually intersects the folds (red line). Inside the cusp, popped and
unpopped regions coexist, and pop ups can propagate with a deforma-
tion path that passes from a stable unpopped strain εp1 to another stable
popped strain εp3 through an unstable intermediate strain εp2. The projec-
tion of the εp1 (or εp2 or εp3) curves on the σ− n plane represents the loci
of propagation stress given by Maxwell construction.

more accentuated as the width W of the transition zone mono-
tonically decreases (Fig. 4C). It is also interesting to note that the
width of the transition zone is inversely proportional to the energy
barrierS1 (Fig. 4D). The largest values ofS1 are observed for unit
cells with very large δ/l and very small n . For such units, the peak
in stress is followed by a sharp drop, and the mechanical response
is characterized by a discrete sequence of drops during propaga-
tion (SI Appendix, Fig. S15D), each corresponding to the opening
of one row of cuts (Movie S4).

Notably, using our model in combination with FE analysis con-
ducted on the unit cells, phase diagrams similar to those shown
in Fig. 4 C and D can be constructed for any cut pattern (SI
Appendix, Fig. S16). Such diagrams can then be used to identify
regions in the parameter space where propagation of instability
is triggered. As examples, in Fig. 5, we report snapshots of cylin-
drical kirigami shells with a staggered array of linear cuts (3–5)
and an array of mutually orthogonal cuts (1, 13). Both images
clearly show the coexistence of the popped and unpopped phases
(SI Appendix, Figs. S5 and S6 and Movies S5–S7) and further
indicate that the characteristics of the phase transition can be
controlled by carefully selecting the geometry of the cuts as well
as the curvature of the shell. The kirigami shell with the linear
pattern is characterized by a sharp propagation front spanning
across about one unit cell and a propagation stress σp = 177 kPa
(SI Appendix, Fig. S18), whereas the orthogonal cuts lead to a
wider front spreading across about four unit cells and σp = 320
kPa (SI Appendix, Fig. S19).

Finally, we find that the coexistence of the buckled and
unbuckled phases observed in our kirigami cylindrical shells

provides opportunities to realize surfaces with complex behav-
ior that can be programmed to achieve a desired functionality.
To demonstrate this, we consider a kirigami surface with 20
rows of triangular cuts separated by hinges with two different
sizes. Specifically, we choose δ/l = 0.033 for three rows near
the two ends and δ/l = 0.125 for the central rows (Fig. 6A). If
such a surface is planar, no clear signature of the two different
δ/l is apparent on stretching. Since the critical strains associ-
ated with the two considered δ/l are very close to each other
(ε̄c = 4.4275× 10−4 and 3.510× 10−4 for δ/l = 0.033 and 0.125,
respectively), all features pop up almost simultaneously and tilt
fairly uniformly (Fig. 6B and SI Appendix, Fig. S9B). By contrast,
if we use the heterogeneous kirigami sheet to form a cylin-
der with n = 8, on stretching, we find a clear sequence. First,
the triangular features separated by ligaments with δ/l = 0.033
pop up all together. Second, the pop ups propagate in the cen-
tral region with δ/l = 0.125 starting from the top (Fig. 6C, SI
Appendix, Fig. S9C, and Movie S8). Remarkably, this sequencing
achieved by simply patterning the sheet with regions charac-
terized by different ligament widths can be exploited to design
a smart skin that significantly enhances the crawling efficiency
of a linear actuator (Fig. 6 D–F). While all three kirigami-
skinned crawlers advance on elongation and contraction of the
actuator because of the anisotropic friction induced by the
pop ups (7) (SI Appendix, section 3), the programmed pop up
achieved in our patterned shell enhances the anchorage of the
crawler to the substrate at two ends and significantly reduces
the backslide (SI Appendix, Fig. S11B). As a result, the pat-
terned crawler (Fig. 6F), which benefits from coexistence of
popped and unpopped regions at desired locations, proceeds
about twice as fast as the crawlers with a homogeneous array of
triangular cuts with either δ/l = 0.033 (Fig. 6D) or δ/l = 0.125
(Fig. 6E).

Discussion and Conclusions
To summarize, we have shown that, in cylindrical kirigami shells,
the buckled and unbuckled phases can coexist, with the pop-up
process initially starting near an end and then, propagating along
the cylinder at constant stress. In contrast to flat kirigami sheets,
which can only support continuous phase transitions, by intro-
ducing curvature, the buckling-induced transformation exhibits
discontinuity in the first derivative of the free energy, resulting in
the coexistence of two phases (37). This remarkable difference
in behavior arises, because the curvature transforms the liga-
ments from straight columns that buckle to bistable arches that
snap. It should be also noted that such response is completely
different from that of porous cylindrical shells, which under com-
pression, exhibit uniform buckling-induced shape transformation
(38–40), whereas it shares similarities with structures consisting
of an array of beams resting on flexible supports, which have
recently been shown to exhibit a very rich response (41, 42). The
behavior of our system can be further understood by looking
at its behavior surface (Fig. 7 shows a triangular pattern with
δ/l = 0.125). We find that, by increasing the curvature of the
shell (i.e., by decreasing n), a cusp catastrophe emerges (43–45).
The increase in curvature causes a progressively larger diver-
gence between the top and bottom faces of the fold, making
the discontinuous phase transition more pronounced. As such,
the behavior surface in Fig. 7 further confirms that the curva-
ture is the essential ingredient to trigger propagation of pop ups.
However, we also find that the stresses introduced to bend the
sheets into cylinders play an important role, as they increase the
energy barrier and make the propagation more pronounced (SI
Appendix, Fig. S14). Finally, we have shown that the characteris-
tics of discontinuous phase transition can be tuned by carefully
selecting the geometry of the kirigami structure. With such con-
trol on the phase transition in kirigami structures, we envision
that these mechanical metamaterials could be used to design the
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next generation of responsive surfaces as shown by the design
of a smart skin that enhances the crawling efficiency of a linear
actuator.

Materials and Methods
Details of fabrication of kirigami shells are described in SI Appendix, sec-
tion 1. The protocol for experiments and additional experimental data
for kirigami shells with triangular, linear, and orthogonal cut patterns are
provided in SI Appendix, section 2. Principles of kirigami-skinned crawlers
are presented in SI Appendix, section 3. Details of FE simulations and
theoretical models are presented in SI Appendix, section 4.
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Supporting Information Text

1. Fabrication
All kirigami structures investigated in this study are fabricated by laser cutting an array of cuts
into polyester plastic sheets (Artus Corporation, NJ) with thickness t ∼ 76.2 µm, Young’s modulus
E = 4.33 GPa and Poisson’s ratio ν = 0.4. As shown in Fig. S1, the laser cutting process results in
cuts with width wc ' 0.1 mm.

A B

Fig. S1. Microscope image (Supereyes A005+ 5MP 500X) of a sheet laser cut to embed a triangular array of cuts with
hinges of width (A) δ = 0.75 mm and (B) δ = 1.50 mm. We find that the laser cutting process results in cuts with width
wc ' 0.1 mm.

A. Kirigami shells.The cylindrical kirigami shells are then fabricated by rolling the laser cut kirigami
sheets and attaching their two opposite edges to each other using a 0.07 mm thick double-sided
adhesive sheet (23205-1009, Blick Art Materials, IL) (Figs. S2A and B). Note that a row of needles
is used to ensure overlapping of the cuts located near the opposite edges and thus maintain the
periodicity of the structure (Figs. S2C and D). Finally, two acrylic circular caps are glued to the
both ends of the cylinder (Figs. S2E and F) and two screws are bolted at the center of the caps to
facilitate attaching the samples to the tensile testing machine (see Supporting Movie S1).

A B C D E F

Fig. S2. Fabrication of a kirigami shell: (A) the double-sided adhesive is laser cut into the desired shape; (B) the polyester
sheet is attached to the adhesive layer and the kirigami pattern is laser cut; (C) very thin adhesive black markers are
attached to the sheet to track the deformation during testing; (D) the two edges of the sheet are attached together using
needles to facilitate alignment; (E) two bolted acrylic caps are laser cut; (F ) the caps are glued to the cylinder ends.

In this study three different kirigami patterns are considered:
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• Triangular pattern: In this pattern, the cuts are arranged on a triangular lattice with lattice
constants l and γ = π/3 (6). The unit cell considered in this study is highlighted in gray
in Fig. S3A. It consists of a rectangular domain with width L = 2l cos π/6 and height
H = 2l sin π/6 with embedded four cuts of length l − δ separated by hinges of width δ.

• Linear pattern: This pattern, which has been considered in several studies (2–4), comprises
an array of staggered linear cuts of length l − δ separated in horizontal direction by hinges
of width δ and in vertical direction by l/8. The unit cell considered in this study with width
L = l and height H = l/4 is highlighted in gray in Fig. S3B.

• Orthogonal pattern: This pattern consists of a square array of mutually orthogonal cuts (5).
This perforation pattern introduces a network of square domains of edge l separated by hinges
of width δ. The unit cell considered in this study with width L = 2l and height H = 2l is
highlighted in gray in Fig. S3C.

Throughout the study, we fix the size of the unit cells (L and H) for each pattern. In particular,
for the triangular pattern we choose l = 12 mm and γ = π/3, resulting in L = 20.8 mm and H = 12
mm, for the linear pattern l = L = 12 mm and H = 3 mm, and for the orthogonal pattern we choose
l = 6 mm, leading to L = H = 12 mm. As a result, the number of units along the circumference n
uniquely determine the size of cylinder. Specifically, the two acrylic caps that we glue at its two ends
have radius r = nL/(2π). However, it is important to note that, because of the cuts, the radius of
the kirigami cylinder is not constant and varies both around the circumferential and axial directions.

BA C

Fig. S3. Three different kirigami patterns are considered in this study: (A) triangular pattern with γ = π/3, (B) linear pattern
and (C) orthogonal pattern. The unit cell of each pattern is shaded.
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2. Experiments
The quasi-static uniaxial tensile response of the kirigami sheets and kirigami cylinders is probed using
an uniaxial testing machine (Instron 5566) equipped with a 10N load cell. All tests are conducted
under displacement control at a rate of 0.5 mm/s. During these tests we record the motion of the
structures using a high-resolution camera (SONY RX100V) at a frame rate of 30 fps and extract
their local deformation using an open-source digital image correlation and tracking package (7). We
track the position of 20 markers uniformly placed on a vertical line (see Fig. S4A) and use these
data to characterize both the applied deformation and the evolution of the local deformation as a
function of the applied strain. Specifically, the applied strain ε̄ is obtained as

ε̄ = zq − zp
Zq − Zp

− 1, [S1]

where zi and Zi denote the position of the i-th marker in the deformed and undeformed configuration,
respectively. Note that, to minimize boundary effects, in Eq. S1 we choose (p, q) = (3, 18), (5, 55)
and (1, 30) for structures with triangular, linear and orthogonal patterns, respectively. As for the
local deformation, focusing on the i-th row of cuts the normal strain in longitudinal direction is
calculated as

εi = zi+1 − zi
Zi+1 − Zi

− 1. [S2]

Additional experimental results are provided in Figs. S4- S6.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3
BA

Fig. S4. Local strain distribution in a kirigami shell with triangular cuts: (A) Kirigami cylinder with n = 8 and δ/l = 0.0625
(with l = 12 mm). (B) Evolution of εi (with i =4, 8, 12 and 16) as a function of the the applied strain ε̄.
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Fig. S5. (A) Snapshots of kirigami shells with linear cuts which are characterized by δ/l = 0.2 (with l = 12 mm) and n = 20
at ε̄ = 0, 0.25 and 0.5. The snapshots clearly indicate that instability propagation in this kirigami shells is characterized by a
very sharp and narrow front. (B) Contour map of local strains εi as a function applied strain ε̄ and unit cell number i.
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Fig. S6. (A) Snapshots of kirigami shells with orthogonal cuts which are characterized by δ/l = 0.08 (with l = 6 mm)
and n = 20 at ε̄ = 0, 0.1 and 0.2. The snapshots clearly indicate that instability propagation in this kirigami shells is
characterized by a wider front compared to that found for the shell with linear pattern considered in Fig. S5. (B) Contour
map of local strains εi as a function applied strain ε̄ and unit cell number i. The orthogonal pattern has a wider front
compared to linear pattern.
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Fig. S7. Effect of imperfection. Snapshots of a kirigami shells with triangular cuts which is characterized by δ/l = 0.125
(with l = 12 mm) and n = 8 at ε̄ = 0, 0.02, 0.05, 0.1 and 0.2. An imperfection is introduced in the middle of the shell by
decreasing the width of one row of hinges (highlighted in red) to δ/l = 0.0625. We find that the pop-ups initiate near the
imperfection and propagate downwards until it reaches the bottom boundary. Further stretching triggers pop-ups from the
top boundary and they continue propagating to reach the region which is already popped up. Finally the shell stretches
uniformly (see Movie S9).
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0 0.03 0.06 0.09 0.12 0.15
0

0.05
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(top unit)
(bottom unit)

A B

Fig. S8. Compliance of the boundaries. (A) In our experiments the pop-up process always starts from the top end (i.e. the
end to which all triangular features are pointing), suggesting that the two ends of the kirigami shells introduce imperfections
of different magnitude. To verify this, we test a kirigami shell with n = 8 and δ/l = 0.0625 and monitor the local strain of the
unit cells. (B) Evolution of ε1 (i.e. the strain of the unit cell next to the top edge) and ε2 (i.e. the strain of the unit cell next to
the bottom edge) as a function of the applied deformation ε̄. We find that because of the asymmetry in geometry the unit
cell next to the upper boundary is much more compliant - an observation that fully explains the initiation of the pop-ups
from the top boundary.
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Fig. S9. (A) Schematic of our patterned kirigami surface. The triangular cuts are separated by ligaments with widths
δ/l = 0.125 in the central part (green region) and δ/l = 0.033 near the two ends (yellow region). (B)-(C) Response of
the patterned (B) kirigami sheet and (C) kirigami shell. The contour maps show the evolution of local strains εi and tilting
angles θi as a function of the applied deformation. Note that the local strains εi are extracted from the experimental images,
while θi are obtained from FE simulations conducted on super-cells.
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3. Kirigami-skinned crawlers
In this study we also use the kirigami cylindrical shells as smart skins to enhance the crawling
efficiency of a linear actuator. Specifically, the kirigami-skinned crawlers tested in this study comprise
a 30 mL plastic syringe as linear actuator covered with a kirigami shell with triangular cuts (see
Fig. S10A). The two ends of the plastic syringe are connected to two acrylic circular caps, that
in turn are glued to the ends of the kirigami shell. A flexible tube passing through the rear cap
then connects the actuator to a syringe pump which is programmed to cyclically inflate/deflate the
plastic syringe. This results in an extension of the actuator of about 54 mm at 2.74 mm/s. Note
that we choose a rigid linear actuator - as opposed to soft actuator used in our previous study (6) -
to exclusively investigate the behavior of the kirigami skin. However, a fully soft crawler can be
easily realized by simply replacing the plastic syringe with a soft actuator.

kirigami shell

plastic syringe
(linear actuator)

connecting tube

air inlet

plexiglass cap

BA
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Fig. S10. (A) Components of the considered kirigami-skinned crawler. (B) Schematics of the three kirigami skins.

We consider three different kirigami skins, all comprising 8× 20 triangular cuts with l = 12 mm
and γ = π/3 (Fig. S10B):

• Kirigami skin with uniform pop-up with δ/l = 0.033;

• Kirigami skin with propagating pop-up with δ/l = 0.125;

• Kirigami skin with programmed pop-up with δ/l = 0.125 for the central units and δ/l = 0.033
for the first three units at the two ends.

To test the ability of the three crawlers to advance upon inflation and deflation of the syringe,
we place them on the inner surface of an acrylic tube (with diameter of 65 mm) covered with a
textile to increase friction. We find that for all three crawlers the elongation of the syringe triggers
the pop-pop of the triangular scales, which in turn induces anisotropic frictional properties and
enables our simple machines to move forward (6). However, since the anchorage to the ground is
not perfect, there is always some backslide movement and not all the elongation induced by the
syringe translates into advancement of the crawler (6). Remarkably, by comparing the performance
of our three crawlers we find that the programmed pop-up achieved in our patterned shell enhances
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the anchorage of the crawler to the substrate at two ends and significantly reduces the backslide
(see Fig. S11B). As a result, the patterned crawler, which benefits from coexistence of popped and
unpopped regions at desired locations, proceeds about twice faster than the other two.
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Fig. S11. (A) Snapshots of our kirigami-skinned crawlers with triangular cuts characterized by δ/l = 0.033 (uniform pop-up),
δ/l = 0.125 and δ/l = 0.125 for the central units and δ/l = 0.033 for first three units at two ends (programmed pop-up). (B)
Displacement of three crawlers normalized by their undeformed active body length (i.e. NH) as a function of the number of
inflation/deflation cycles.
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4. Modeling
To get a better understanding of the response of the considered kirigami structures, we investigate
their behavior both numerically and analytically. First, we conduct Finite Element (FE) simulations
on both unit cells and super-cells. Second, informed by these analyses, we establish an analytical
model that predicts the stress required to trigger a propagative instability as well as the strain
distribution within the structure during the propagation of the pop-ups.

A. Finite Element Simulations.To investigate the response of the kirigami structures under uni-
axial stretch, we perform Finite Element (FE) Analyses using the commercial package ABAQUS
6.14/Standard (1). In all our analyses we discretize the sheets using four-node general-purpose shell
elements with reduced integration and hourglass control (S4R element type) and, guided by our
experiments (see Fig. S1) model the cuts as elongated rectangular voids with width of 0.1 mm. Since
plasticity has little effect on the observed phenomena, the material behavior of the plastic sheets is
captured using a linear elastic material model (with E = 4.33 GPa and ν = 0.4). The response of the
kirigami structures is then simulated conducting non-linear static simulations (*STATIC module in
ABAQUS). Due to the existence of local buckling during the deformation, to facilitate convergence
we also add volume-proportional damping to the model (using the option STABILIZE in ABAQUS)
and set the dissipated energy fraction equal to 5e-4 and the maximum ratio of stabilization to strain
energy equal to 0.05. To reduce the computational cost and make sure the response of the system is
not dominated by boundary effects, we conduct analysis on both unit cells and super-cells comprising
N × 1 unit cells. For the unit cells, we apply periodic boundary conditions to all four edged, whereas
for the super-cells we apply periodic boundary conditions only to the left and right ones.

In the following we provide details on the simulations we conduct to investigate the response of
(i) flat, (ii) rolled and (iii) curved kirigami sheets.

Flat kirigami sheets.The simulations conducted to investigate the response of flat kirigami sheets
consist of two steps.

Step 1: we apply a small displacement (with amplitude 0.1t) normal to the sheet either to the tip
of the cuts (in case of the triangular patterns) or to the middle of the cuts (in case of the linear
and orthogonal patterns). In this way we introduce a small imperfection into the mesh to guide
the post-buckling analysis. Note that to facilitate convergence during this step no traction and
displacement are applied to the nodes lying on the external edges of the models.

Step 2: We apply a strain ε to axially stretch the periodic cells. To simulate this on the unit cells,
we apply periodic boundary conditions on all four edges. Specifically, we subject the unit cells to a
macroscopic deformation

H = εxxex ⊗ ex + ε ez ⊗ ez, [S3]

by imposing the following periodic boundary conditions on all cell boundaries

uAi
α − uBi

α = H(XAi
β −X

Bi
β ),

θAi
α = θBi

α i = 1, 2, ....N
[S4]

where uAi
α , uBi

α , θAi
α and θBi

α (α = x, y and z) are the displacements and rotations of points periodically
located on the boundary of the unit cell, XAi

β and XBi
β are their initial coordinates and N denotes

the number of pairs of nodes periodically located on the boundary of the unit cell. Moreover, εxx is
the stretch in transverse direction that is determined from σxx = 0. Note that the components of
H can be conveniently prescribed within the finite element framework using a set of virtual nodes.
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The corresponding macroscopic first Piola-Kirchhoff stress P is then obtained through virtual work
considerations (11).

As for the super-cells, they are subjected to uniaxial tension by fixing all nodes on their top
surfaces in x and y directions, while uniformly displacing them in z-direction. The applied nominal
strain, ε, is then obtained as the ratio between the applied axial displacement and the initial length
of the model. Moreover, the corresponding nominal stress, S, is calculated by dividing the total
reaction force on the top edge by the undeformed cross-sectional area of the sample, A = Lt.

Rolled kirigami sheets.The simulations conducted to investigate the response of rolled kirigami sheets
also consist of two steps. Note that the periodic boundary conditions derived below are validated by
comparison with analytical expressions for the deformation of a homogeneous (i.e. without cuts)
sheet.

Step 1: We transform the flat model to a cylindrical one. We start with a flat unit cell with length
L and height H (see Fig. S12) and roll it into a sector of a cylinder. At this point it is important to
note that, because of the cuts, the radius of the kirigami cylinder is not constant and varies both
around circumference and along the axial direction. To determine the boundary conditions required
to roll a flat periodic cell into a cylindrical one, we assume that the flat cell is located at a distance
y0 from the center of the cylinder and symmetrically positioned with respect to the y axis. Under
these assumptions, we find that it can be rolled into a cylindrical shape when its left and the right
edges are subjected to (see Fig. S12)

• a rotation with respect to the z-axis
θz = ±π

n
, [S5]

• displacements in circumferential and radial direction that satisfy

y2
0 + L2

4 = (ρ cos δφ+ uρ)2, sin δφ = uφ
ρ

[S6]

where ρ and φ are respectively the radial and angular coordinates of the nodes periodically located
on the edges and δφ = π/n−arctanL/(2y0). Guided by Eqs. S5 and S6, we then apply the following

flat

rolled

stretched
after rolling

right

left flat

rolled

B C
bottom

top

A

Fig. S12. (a) Schematic highlighting the coordinate system; (b) In our simulations, we start with a flat unit cell, we then roll
it into a sector of a cylinder and finally stretch it. (c) Schematic highlighting the conditions that we use to roll the unit cell.
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boundary conditions to the nodes periodically located on the left and right edges of the initially flat
periodic cell

uRi
ρ = uLi

ρ ,

uRi
φ = −

(√
y2

0 + L2/4− uRρ
)

tan δφ,

uLi
φ =

(√
y2

0 + L2/4− uLρ
)

tan δφ,

uRi
z = uLi

z ,

θLi
ρ = −θRi

ρ ,

θLi
φ = θRi

φ ,

θLi
z − θRi

z = 2π
n
, i = 1, 2, ....N [S7]

where ujα and θjα (α = ρ, φ, z and j = Li, Ri) are respectively the displacement and rotational
degrees of freedom in the radial (ρ), circumferential (φ) and axial (z) directions of the i-th pair of
nodes periodically located on the right (R) and left (L) edges of the unit cell.

As for the top and bottom edges, we let them to be free, so that, as observed when fabricating
our kirigami cylinders, the periodic cell can axially contract as it is rolled. To achieve this on the
unit cells, we use Eqs. S4 with

H = εzzez ⊗ ez [S8]

and determine εzz by imposing σzz = 0.
Step 2: We apply a strain ε to axially stretch the periodic cells. To simulate this on the unit cells,

we keep active the boundary conditions defined by Eqs. S7 on the left and right edges, while on the
top and bottom edges we still use Eqs. S4, but with

H = ε ez ⊗ ez. [S9]

Finally, for super-cells with nz × 1 units, we impose Eq. S7 on their left and right edges, fix all the
degrees of freedom of the nodes on the bottom edge (i.e. we set uBz = uBφ = uBρ = θBφ = θBρ = θBz = 0)
and set uTz = εnzH and θTρ = θTφ = 0, while leaving uTρ , uTφ and θTz free.

Validation of the periodic boundary conditions used to simulate the response of rolled kirigami sheets
To confirm the validity of the proposed approach to simulate the response of rolled cylinders, we
compare FE results (obtained by using Eqs. S7 and Eqs. S4 with Eq. S8 and Eq. S9) against
analytical solutions for a homogeneous sheet which is first rolled into a cylinder and then stretched
(Fig. S13B). To derive such analytical solution, we start by noting that, when the bending radius r
and the width of the sheet L are much larger than the sheet thickness t, during the rolling/bending
process: (i) the cross section of the sheet remains planar; (ii) the neutral layer coincides with the
mid-plane; (iii) there is no stress in radial direction (i.e. σy = 0); and (iv) there is no deformation
in axial direction (i.e. εz = 0). Under these assumptions, the Hook’s Law reads

σx = Eεx
1− ν2 . [S10]
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Fig. S13. Validation of the periodic boundary conditions by comparing analytical solutions [Eq. S12] and FE simulations
for a solid sheet that is first rolled into a (portion of) a cylinder and then stretched. (A) Schematic of the unit cell. (B)
Comparison between FE and analytical results for n= 4 and 8.

where εx = y/r is the circumferential strain, r = L/α being the radius of the cylinder. It follows
that the bending moment M bending

z required to bend the flat cell into a curved one is given by

M bending
z =

∫ t/2

−t/2
σxHydy = EHt3α

12L (1− ν2) . [S11]

As for the stretching process, because of the Poisson’s effect, we expect the sheet to shrink circum-
ferentially, so that

εx = y

r
− νεz, εy = −νεz [S12]

εz denoting the applied axial stretch. Moreover, during stretching α = 2π/n and r = nL/2π (n
being the number of unit cell along the circumference). Consequently, the bending moment during
the stretching process reads:

M stretching
z =

∫ t(1−νεz)/2

−t(1−νεz)/2
σxH(1 + εz)ydy = πEHt3 (εz + 1) (1− νεz) 3

6nL (1− ν2) . [S13]

In Fig. S13C we compare analytical (Eqs. S11 and S13) and FE results (using Eqs. S7 and Eqs. S4
with Eq. S8 and Eq. S9) for n = 4 and 8. We find a great agreement between the two sets of data,
confirming the validity of our numerical analysis.

Curved kirigami sheets..To investigate the effect of the residual stresses generated during rolling on
the mechanical response of our kirigami cylinders, we also performed simulations on initially curved
( stress-free) models. The curved models are created in SolidWorks (Version 2016) by wrapping a
flat cell around a curved sector of a cylindrical surface with radius r = Ln/(2π). To stretch them
axially, we then apply the following periodic boundary conditions to their left and the right edges:
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uRi
ρ = uLi

ρ ,

uRi
φ = uLi

φ ,

uRi
z = uLi

z ,

θLi
ρ = θRi

ρ = 0,
θLi
φ = θRi

φ ,

θLi
z = θRi

z = 0, i = 1, 2, ...N. [S14]

As for the top and bottom edges, we apply the same periodic boundary used for the case of the
rolled kirigami sheets.

Additional numerical results are provided in Figs. S14-S21.
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Fig. S14. Comparison between the stress-strain curve of curved and rolled unit kirigami sheets with triangular cuts. We
consider unit cells with l = 12mm and δ = 0.75mm and use (A) n = 8, (B) n = 16 and (C) n = 32. We observe that for
small n (i.e. large curvature) the rolled kirigami sheets are significantly stiffer than the initially curved ones. However, as the
number of units along the circumference increases their responses converge to each other. Also, we find that for the rolled
kirigami sheets the overshoot in stress-strain curve is more pronounced than for initially curved ones.
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Fig. S15. (A) Phase diagram for kirigami shells with triangular cut pattern. The color indicates the energy barrier S1
(see shaded green area in B) normalized by the total energy required for phase transition (i.e. σp∆ε). The white region
represents uniform pop-up. This plot is obtained by simulating the response of 441 rolled unit cells. The type of behavior is
determined based on the obtained stress-strain curve. If the stress monotonically increases as a function of the strain, a
uniform pop-up is triggered; otherwise a propagative instability. (B) Schematic strain-stress curve of a unit cell of a kirigami
shell indicating the energy barrier S1, propagation stress σp obtained by the condition S1 = S2, strain increment required
for phase transition ∆ε, two stable strains at unpopped (εp1) and popped (εp3 = εp1 + ∆ε) states and the intermediate
unstable strain εp2. (C) FE stress-strain curves obtained by simulating two rolled unit cells (n = 8, L = 12 mm) with
triangular cuts indicated in phase diagram (A) with dashed squares and characterized by FE δ/l = 0.0625 and δ/l = 0.125.
(D) Experimental stress-strain curves for two kirigami shells built using the unit cells considered in C. Note that the sharp
drop in load found in the stress-strain curve of the unit cell with δ/l = 0.125 results in a discrete sequence of small drops
during propagation of pop-ups in the finite-sized structure, each corresponding to the opening of one row of cuts. For such
snapping propagation regime we expect a fraction of energy to be dissipated, so that the use of Maxwell’s rule (which is
based on the assumption of a conservative system) is not rigorous.
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Fig. S16. Phase diagrams for kirigami shells with (A, B) linear and (C, D) orthogonal cut patterns obtained by simulating
respectively 253 and 231 rolled unit cells. The color in A and C indicates the energy barrier S1 (see shaded green area in
Fig. S15B) normalized by the total energy required for phase transition (i.e. σp∆ε) while in B and D, the color shows W
the width of the transition zone in the unit of number of units. The white region represents uniform pop-up. These plots
are obtained as described in the caption of Fig. S15. Note that, since the response of the linear pattern is very sensitive
to imperfection, the phase diagram shown in (A) is obtained by imposing an initial imperfection with magnitude equal to
0.1t. Moreover, since for most configurations the energy barrier is very small, we expect only a limited number of them
(characterized by large S1) to exhibit a well visible propagation of pop-ups.
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Fig. S17. (A) Stress-strain response for a kirigami shell with triangular pattern characterized by l = 12mm and δ = 0.75mm.
Results from FE simulations conducted on a rolled 20× 1 super-cell are compared to experiments and to the numerical
predictions obtained for the corresponding unit cell. Excellent agreement between experiments and FE simulations is found.
(B) Snapshots of the deformed super-cell at different applied strain ε̄. In the snapshots we also show the von Mises stress
distributions.
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Fig. S18. (A) Stress-strain response for a kirigami shell with linear pattern characterized by l = 12 mm and δ/l = 0.2.
Results from FE simulations conducted on a rolled 20× 1 super-cell are compared to experiments and to the numerical
predictions obtained for the corresponding unit cell. Excellent agreement between experiments and FE simulations is found.
(B) Snapshots of the deformed super-cell at different applied strain ε̄. In the snapshots we also show the von Mises stress
distributions.
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Fig. S19. (A) Stress-strain response for a kirigami shell with orthogonal pattern characterized by l = 6 mm and δ/l = 0.08.
Results from FE simulations conducted on a rolled 20× 1 super-cell are compared to experiments and to the numerical
predictions obtained for the corresponding unit cell. Excellent agreement between experiments and FE simulations is found.
(B) Snapshots of the deformed super-cell at different applied strain ε̄. In the snapshots we also show the von Mises stress
distributions.
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Fig. S20. The effect of the imperfection size on the stress-strain behavior of kirigami shell is investigated by conducting
FEM simulations on super-cells with a triangular cut pattern characterized by δ/l = 0.0625, l = 12mm and n = 8. In our
models the size of the hinge in the top unit cell is reduced to δ0 < δ. We find that as δ0/δ increases the overshoot in the
stress-strain curve decreases and eventually vanishes for δ0/δ=0.5. By contrast, the propagation stress σp is not affected
by δ0/δ.

22 of 33 Ahmad Rafsanjani, Lishuai Jin, Bolei Deng and Katia Bertoldi



B. Theoretical model.Both our experiments and our FE simulations show that in thin cylindrical
kirigami shells subjected to tensile loading the buckling induced pop-up process initially localizes
near an imperfection and then, as the deformation is increased, progressively spreads through the
cylinder at constant stress. Moreover, our FE simulations indicate that the stress-strain response
of a rolled kirigami unit cell is non-monotonic, characterized by a peak, a subsequent drop in load
and final stiffening (see Fig. 3B of the main text). Guided by these observations, here we develop
models to characterize the behavior of our kirigami structures.

Maxwell construction.Maxwell construction (10) applied to the stress-strain response of a unit cell
enables us to identify several key parameters that characterize the behavior of our curved kirigami
shell. Specifically, by equating the area of the two lobes formed by the σ(ε) curve (i.e. by imposing
S1 = S2) we can identify (i) the propagation stress σp, (ii) the energy barrier S1 and (iii) the critical
strains εp1, εp2 and εp3 (see Fig. S21). While for ε̄ < εp1 the structure deforms homogeneously
and all triangular features are unpopped, for εp1 < ε̄ < εp3 the pop-up process initiated at the top
end of the sample spreads towards the other end. However, it is important to note that Maxwell
construction does not provides any information on the width and the shape of the transition zone.
This motivates the derivation of the more detailed and comprehensive model described below.
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Fig. S21. (A) Typical stress-strain curve for a rolled kirigami unit cell. Several parameters can be identified from Maxwell
construction (i.e. by imposing S1 = S2). (B) Experimental images of a kirigami shell fabricated by rolling a sheet with a
triangular pattern characterized by δ/l = 0.0625 (with by l = 12 mm and n = 8 unit cells along the circumference) at ε̄ = 0
(before the test starts), ε̄ < εp1 (before the pop-up process starts), εp1 < ε̄ < εp3 (during propagation of pop-ups) and
ε̄ > εp3 (after all triangular features popped-up).

Detailed model.To predict the strain distribution during the propagation of the pop-ups, we use
a 1D array of non-linear springs (see Fig. S22). In our model the response of the i-th spring is
described by

Fi(ui, ui+1) = nLt× σ (εi) , with εi = ui+1 − ui
H

, [S15]

where σ(εi) is the non-linear stress-strain response of the unit cell and ui and ui+1 denote the axial
displacement at the two ends of the spring.
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Fig. S22. The response of our kirigami structures is captured using a 1D array of non-linear springs connected in series.
To accurately capture the effect of strain gradient we introduce an additional term (represented by the blue dashed lines in
the schematic) that connects the response of the i-th spring to that of the two neighboring ones.

It follows that for a system comprising a N springs the total strain energy is given by

U =
N∑
i=1

∫ ui+1−ui

0
Fid(ui+1 − ui) =

N∑
i=1

nLt
∫ ui+1−ui

0
σ
(
ui+1 − ui

H

)
d(ui+1 − ui), [S16]

from which the equilibrium equation can be derived as

∂U

∂ui
= 0, for i = 1, ..., N. [S17]

To test the ability of our discrete model to capture the response of our kirigami structures, we
focus on a kirigami shell with n = 8 and triangular cuts characterized by δ/l = 0.0625. We first
use FE analyses to determine the stress-strain behavior of the unit cell (see Fig. S23A). Then, we
use both FE analyses and our discrete model based on Eq. S16 to investigate the response of a
cylindrical shell comprising two rows of unit cells (i.e. N = 2) when subjected to two different
loading conditions, case #1 and case #2 (see Fig. S23B). For case #1, we stretch the two unit
cells homogeneously (i.e. we impose ε1 = ε2 and progressively increase ε1), whereas for Case #2 we
stretch the first unit cell, while keeping the second one closed (i.e. we set ε2 = 0 and progressively
increase ε1), inducing a highly inhomogeneous deformation. As it can be seen in Figs. S23C and D,
the inhomogeneous deformation (i.e. the strain gradient) of case #2 makes the structure significantly
stiffer - a feature that cannot be captured by our simple model.

To properly account for the effect of the strain gradient, which significantly affects the response of
our system given the strong coupling between its unit cells, we modify the strain energy given in
Eq. S16 to

U =
N∑
i=1

nLt
∫ ui+1−ui

0
σ
(
ui+1 − ui

H

)
d(ui+1 − ui) +

N∑
i=2

1
2nLtG (ui+1 − 2ui + ui−1)2 . [S18]

where the last term is introduced to capture the effect of the strain gradient (8, 9) (see Fig. S22B).
Note that the coefficient G in Eq. S18 can be easily determined using the two FE simulations shown
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Fig. S23. (A) Stress-strain curve for a unit cell of a kirigami shell with n=8 and δ/l = 0.0625 as predicted by our FE analysis.
(B) We simulate the response of a super-cell comprising 2× 1 unit cells when: (case #1) the two unit cells are stretched
homogeneously (i.e. we impose ε1 = ε2 and progressively increase ε1) and (case #2) the first unit cell is stretched while
the second one is kept closed (i.e. we set ε2 = 0 and progressively increase ε1). (C) The response of the structure for
case #1 obtained via FE analysis is nicely captured by both the model with G = 0 and G = 428 kPa. (D) The response of
the structure for case #1 obtained via FE analysis is not captured by the model with G = 0, whereas is nicely captured by
the model with G = 428 kPa, motivating the introduction of the strain gradient term.

in Fig. S23. More specifically, since the initial stiffness K predicted using Eq. S18 for Case #1 and
Case #2 is given by

KCase#1 = ∂2UCase#1

∂(u2 − u1)2

∣∣∣∣
u1=u2=0

= nLt

H

∂σ(ε)
∂ε

∣∣∣∣
ε=0

,

KCase#2 = ∂2UCase#2

∂(u2 − u1)2

∣∣∣∣
u1=u2=0

= nLt

H

∂σ(ε)
∂ε

∣∣∣∣
ε=0

+ nLtG,

[S19]

it follows that
G = KCase#2 −KCase#1

nLt
. [S20]

In Figs. S23C and D we compare the results of our discrete model based on Eq. S18 with those
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obtained via FE analyses. We find that using G = 428 kPa (value determined using Eq. S20) the
model captures very well the response of the structure for both loading cases, indicating that the
coupling constant G should be included in the model to correctly capture the response of our system.
On the other hand, it is interesting to note that if a structure consists of units that are not strongly
coupled so that KCase#1 −KCase#2 → 0, then G → 0 and the term introduced to capture the effect
of strain gradient vanishes.

Having established a simple discrete model capable of capturing the non-linear response of our
kirigami structures, we now use it to investigate the characteristics of the triggered propagative
instability. To this end, since our experiments indicate that the propagation of the instability-induced
pop-up process occurs at a constant axial stress σp, we write the total potential energy of the system
as,

Π =U − Fp(uN+1 − u1)

=
N∑
i=1

nLt
∫ ui+1−ui

0
σ
(
ui+1 − ui

H

)
d(ui+1 − ui) +

N∑
i=2

1
2nLtG (ui+1 − 2ui + ui−1)2 − Fp(uN+1 − u1),

[S21]

with
Fp = nLtσp. [S22]

We then derive the equilibrium equations by imposing

∂Π
∂ui

= 0, for i = 1, ..., N. [S23]

and obtain

σ
(
ui+1 − ui

H

)
− σ

(
ui − ui−1

H

)
−G [ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2] = 0, for = 3, ..., N − 1

[S24]

which can be rewritten in terms of the local strain εi = (ui+1 − ui)/H as

Ei = σ (εi)− σ (εi−1)−G (εi+1 − 3εi + 3εi−1 − εi−2) = 0, for = 3, ..., N − 1 [S25]

Next, we introduce a continuous function ε(Z), which interpolates the discrete variable εi as

ε(Z = iH) = εi, [S26]

where Z denotes the position along the structure. Using Taylor expansion, the strains εi±1 and εi±2
can then be expressed as

εi+p = ε(iH) + pH
dε(iH)
dZ + p2H2

2
d2ε(iH)
dZ2 + p3H3

6
d3ε(iH)
dZ3 + O

(
d4ε(iH)
dZ4

)
, [S27]

with p =-2, -1, 1 and 2. By substituting Eqs. S27 into

Ei+1 + Ei = σ (εi)− σ (εi−1)−G (εi+2 − 2εi+1 + 2εi−1 − εi−2) = 0 [S28]

and retaining terms up to the third order, we obtain

GH2 d3ε

dZ3 −
dσ(ε)
dZ = 0, [S29]
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which we integrate with respect to Z to get

GH2 d2ε

dZ2 − σ(ε) + C1 = 0, [S30]

where C1 is an integration constant. If we assume that at Z → −∞ the structure is unpopped
(so that d2ε/dZ2|−∞ = 0) and define εp1 as the strain experienced by the unpopped unit cells
when subjected to a constant stress σp (i.e. ε(Z → −∞) = εp1, where εp1 is the smallest root of
σ(ε)− σp = 0), we find that

C1 = σ(εp1) = σp. [S31]
Substitution of Eq. S31 into Eq. S30 yields

GH2 d2ε

dZ2 = σ(ε)− σp, [S32]

which can be solved to obtain the spatial profile of the strain, ε(Z), for a given σp.
Next, to gain more insight into the response of our kirigami structures, we multiply Eq. S32 by

dε/dZ and integrate with respect to Z to get

1
2GH

2
(
d2ε

dZ2

)2

= −
∫ ε

0
[σ(ε′) + σp] dε′ [S33]

which can be viewed as the sum of the kinetic energy (with respect to the pseudo-time Z) and
the potential energy of a fictitious particle of mass GH2 (13). Thus, the solution ε(Z) of Eq. S32
describes the motion of such particle in the potential

Veff (ε) = −
∫ ε

0
[σ(ε′)− σp] dε′. [S34]

Specifically, the existence of propagation of pop-ups requires a Veff with two stable configurations
(located at εp1 and εp3) characterized by the same energy level. Under these conditions, a fictitious
particle leaving the first peak at rest can reach the second one with a vanishing "velocity" dε/dZ
and this corresponds to a transition that brings each unit cell from εp1 and εp3. Focusing on the
kirigami unit cells investigated in this study, we find that, if the stress-strain curve of the unit
cell is monotonic (as for our flat unit cells - see Fig. S24A), Veff has a single stable configuration
(see Fig. S24B) and propagation of pop-ups cannot exist. By contrast, if the stress-strain curve is
non-monotonic (and characterized by an up-down-up behavior - see Fig. S24C ) and σp is chosen so
that the equation σ(ε) − σp = 0 has three real roots, Veff has two stable configurations (see Fig.
S24C ) located at εp1 and εp3 (see Fig. S24D). However, these two configurations are characterized by
the same energy only when σp corresponds to the Maxwell stress (i.e. the stress for which S1 = S2) -
an observation that confirms the validity of or model. Inspection of Eq. S33 also provides insights
on the width of the transition zone. More specifically, since the motion of the fictitious particles
gets slower as its mass GH2 increases, we expect the transition zone to becomes wider for larger
GH2 (i.e. for structures characterized by a larger coupling constant G). Therefore, given a specific
non-monotonic stress strain curve of the unit cell σ(ε), Eq. S32 can be numerically solved to obtain
the strain distribution within the structure during the propagation of the pop-ups.

Finally, we validate the ability of our model to capture the response of our kirigami structures by
comparing the evolution of the strain along the cylindrical kirigami shells as predicted by our model
and measured in experiments at different level of applied strain for shells with triangular pattern
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Fig. S24. (A) Stress-strain curve of a flat unit cell with triangular cuts characterized by δ/l = 0.0625 as obtained via FE
analysis. (B) Corresponding potential energy Veff as a function of applied strain ε for three different σp (note that the color
of the curves corresponds to the σp indicated in A). (C) Stress-strain curve of a rolled unit cell with n=8 and triangular cuts
characterized by δ/l = 0.0625 as obtained via FE analysis. (D) Corresponding potential energy Veff as a function of applied
strain ε for three different σp (note that the color of the curves corresponds to the σp indicated in A)

(with δ/l = 0.0625 and n = 8 - Fig. S25A), linear pattern (with δ/l = 0.2 and n = 20 - Fig. S25B)
and orthogonal pattern (with δ/l = 0.08 and n = 20 - Fig. S25C ). Note that the model predictions
are obtained by numerically integrating Eq. S32 with σ(ε) predicted by our FE simulations on the
unit cell and σp equal to the Maxwell stress. Moreover, since the solution of Eq. S32 is translational
invariant with respect to Z, the position of the propagation front Z0 (see Fig. S21B) for a given
applied strain ε can be determined from the compatibility condition

ε̄ = 1
Zq − Zp

∫ Zq

Zp

ε(Z − Z0) dZ. [S35]

where, to minimize boundary effects, we choose (p, q) = (3, 18), (5, 55) and (1, 30) for structures
with triangular, linear and orthogonal patterns, respectively. In Fig. S25 we find a very nice
agreement between the experimental results and the predictions of our model, with our model
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correctly predicting the very different widths and amplitudes of the transition zones for the three
structures as well as their position as a function of the applied deformation.
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Fig. S25. Comparison between the evolution of the strain along the cylindrical kirigami shells as measured in experiments
and obtained by numerically integrating Eq. S32 for (a) a triangular pattern with δ/l = 0.0625 and n = 8, (b) a linear pattern
with δ/l = 0.2 and n = 20 and (c) an orthogonal pattern with δ/l = 0.08 and n = 20.

Special case with analytical solution. While Eq. S36 is nonlinear, it is interesting to note that
it admits analytical solution if the stress-strain curve of a unit cell is described by a third order
polynomial,

σ(ε) = B1ε+B2ε
2 +B3ε

3. [S36]

Substitution of Eq. S36 into the continuum governing equation Eq. S32 yields,

d2ε

dZ2 = B1ε+B2ε
2 +B3ε

3 − σp
GH2 , [S37]

which is a Klein-Gordon equation with quadratic and cubic nonlinearities (12). Such equation yields
analytical solution of the form

ε(Z) = εp1 + ∆ε
2

[
1 + tanh

(
Z − Z0

W

)]
, [S38]

where εp1 and εp1 + ∆ε denote the strain experienced by the unit cells in the closed/unpopped and
open/popped configuration, respectively, W is the width of the transition zone and Z0 provides the
position of such transition zone. By substituting the solution S38 into Eq. S32 we find that the
latter is identically satisfied only if

∆ε =
2
√
B2

2 − 3B1B3√
3B3

, εp1 = −∆ε
2 −

B2

3B3
, W = H

√
6GB3

B2
2 − 3B1B3

. [S39]

At this point it is also important to point out that the strain distribution defined by Eq. S38
exists only if ∆ε, W and εp1 are real valued, a condition that is satisfied only if

B2
2 − 3B3 > 0, and G > 0. [S40]
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Moreover, an explicit expression for the propagation stress can be obtained by substituting Eq. S39
into Eq. S36

σp = σ(εp1) = 2B3
2 − 9B1B2B3

27B2
3

. [S41]

and the position of the transition zone Z0 is determined by introducing Eq. S38 into Eq. S35

ε̄ = εp1 + ∆ε
2 + W∆ε

Zq − Zp

{
log

[
cosh

(
Zq − Z0

W

)]
− log

[
cosh

(
Zp − Z0

W

)]}
. [S42]

Finally, we note that, since the energy barrier S1 is given by

S1 =
∫ εp2

εp1
(B1εi +B2ε

2
i +B3ε

3
i )dεi − σp(εp2 − εp1) = (B2

2 − 3B1B3)2

36B3
3

, [S43]

where εpi (with i = 1, 2 and 3) denote the three roots of

B1ε+B2ε
2 +B3ε

3 = σp, [S44]

the width of the transition zone can be expressed as,

W =
√

G√
B3S1

. [S45]

Eq. S45 clearly show that the width of the transition zone W is determined by the balance between
G (which captures the level of coupling between the unit cells) and S1 (which represent the energy
barrier to overcome for the pop-up process to propagate). The larger is the coupling or the smaller
is the energy barrier, the larger is the width of the transition zone.
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Movie S1. Propagation of instability in a long party balloon.

During inflation a long party balloon, first expands diametrically in a uniform fashion. However,
at some value of pressure, the deformation localizes near an imperfection forming a bulge. Finally,
as more compressed gas is made available, the bulge grows to a well defined diameter and then stops
growing diametrically and starts growing in length. Inflation of a long party balloon is an example
of instability propagation.

Movie S2. Fabrication of kirigami shells.

Fabrication of a kirigami shell: (i) the double-sided adhesive is laser cut into the desired shape;
(ii) the polyester sheet is attached to the adhesive layer and the kirigami pattern is laser cut; (iii)
very thin adhesive black markers are attached to the sheet to track the deformation during testing;
(iv) the two edges of the sheet are attached together using needles to facilitate alignment; (v) two
bolted acrylic caps are laser cut; (vi) the caps are glued to the cylinder ends.

Movie S3. Kirigami with triangular cuts: tensile response of sheet vs shell

Comparison between tensile deformation of three kirigami structures with triangular cuts: (left)
a flat kirigami sheet characterized by 2 × 20 units with δ/l = 0.0625, (middle) a kirigami shell
characterized by 8× 20 units with δ/l = 0.0333 and (right) a kirigami shell characterized by 8× 20
units with δ/l = 0.0625. For all samples t = 76.2 µm and l = 12 mm. The kirigami sheet and the
kirigami shell with δ/l = 0.0333 pop up uniformly while the kirigami shell with δ/l = 0.0625 exhibits
a propagating pop-up deformation. Dashed squares shows the magnified regions.

Movie S4. Snapping propagation of pop-ups in a kirigami shell with triangular cuts.

Tensile response of a kirigami shell with triangular cuts characterized by 8 × 20 units with
δ/l = 0.125, t = 76.2 µm and l = 12 mm. This structure is characterized by a large energy barrier
S1, resulting in a sharp propagation front. As a result, the stress-strain curve of the structure is
characterized by a discrete sequence of drops during propagation, each corresponding to the opening
of one row of cuts. Dashed square shows the magnified region.

Movie S5. Kirigami with linear cuts: tensile response of sheet vs shell

Comparison between tensile deformation of three kirigami structures with linear cuts: (left) a flat
kirigami sheet with 3× 60 units, (middle) a kirigami shell with 4× 60 units and (right) a kirigami
shell with 20× 60 units. For all samples δ/l = 0.2, t = 76.2 µm and l = 12 mm. The kirigami sheet
and the kirigami shell with n = 4 pop up uniformly, whereas the kirigami shell with n = 20 exhibits
a propagative instability. Dashed squares shows the magnified regions.

Movie S6. Kirigami with orthogonal cuts: tensile response of sheet vs shell

Comparison between tensile deformation of three kirigami structures with orthogonal cuts: (left)
a flat kirigami sheet with 2 × 20 units, (middle) a kirigami shell with 4 × 20 units and (right) a
kirigami shell with 20 × 20 units. For all samples δ/l = 0.08, t = 76.2 µm and l = 6 mm. The
kirigami sheet and the kirigami shell with n = 4 pop up uniformly, whereas the kirigami shell with
n = 20 exhibits a propagative instability. Dashed squares shows the magnified regions.
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Movie S7. Finite element simulations

(1) Deformation of unit cells of three kirigami structures with triangular cuts up to ε̄ = 0.3:
(left) flat, (middle) initially curved, (right) rolled unit cells characterized by n = 8, δ/l = 0.0625,
t = 76.2 µm and l = 12 mm. The contours show the distribution of the von Mises stress.

(2) Comparison between deformation of two kirigami shells with triangular cuts characterized by
δ/l = 0.0625 and δ/l = 0.125 with n = 8, t = 76.2µ m and l = 12 mm. For each case the response
of the unit cell, super cell and visually tessellated super cell are shown. The contours show the
distribution of the von Mises stress.

(3) Deformation of a kirigami shell with linear cuts characterized by n = 20, δ/l = 0.2, t = 76.2µm
and l = 12 mm: (left) unit cell, (middle) super cell and (right) visually tessellated super cell. The
contours show the distribution of the von Mises stress.

(4) Deformation of a kirigami shell with orthogonal cuts characterized by n = 20, δ/l = 0.08,
t = 76.2 µm and l = 20 mm: (left) unit cell, (middle) super cell and (right) visually tessellated super
cell. The contours show the distribution of the von Mises stress.

Movie S8. Programming pop-ups

(1) Response of programmed kirigami sheet and kirigami shell under tension. These kirigami
surfaces comprise an array of triangular cuts separated by ligaments with width δ/l = 0.125 in the
center and δ/l = 0.033 near the two two ends.

(2) Performance of three crawlers skinned with kirigami shells which exhibit uniform, propagating
and programmed pop-up.

Movie S9. Effect of imperfection

Deformation of an imperfect kirigami shells with triangular cuts which is characterized by
δ/l = 0.125 (with l = 12 mm) and n = 8. An imperfection is introduced in the middle of the shell
by decreasing the width of one row of hinges to δ/l = 0.0625.
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