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Flexoelectric Actuation and
Vibration Control of Ring Shells
The converse flexoelectric effect, i.e., the polarization (or electric field) gradient-induced
internal stress (or strain), can be utilized to actuate and control flexible structures. This
study focuses on the microscopic actuation behavior and effectiveness of a flexoelectric
actuator patch laminated on an elastic ring shell. An atomic force microscope (AFM)
probe is placed on the upper surface of the flexoelectric patch to induce an inhomogene-
ous electric field resulting in internal stresses of the actuator patch. The flexoelectric
stress-induced membrane control force and bending control moment regulate the ring
vibration and their actuation mechanics, i.e., transverse and circumferential control
actions, are, respectively, studied. For the transverse direction, the electric field gradient
quickly decays along the ring thickness, resulting in a nonuniform transverse distribution
of the induced stress, and this distribution profile is not influenced by the actuator thick-
ness. The flexoelectric-induced circumferential membrane control force and bending
control moment resemble the Dirac delta functions at the AFM contact point. The flexo-
electric actuation can be regarded as a localized drastic bending to the ring. To evaluate
the actuation effect, dynamic responses and controllable displacements of the elastic ring
with flexoelectric actuations are analyzed with respect to design parameters, such as the
flexoelectric patch thickness, AFM probe radius, ring thickness, and ring radius.
[DOI: 10.1115/1.4036097]

Introduction

Precision actuation and vibration control are essential in many
engineering applications. This study is to evaluate precision flexo-
electric actuation and control of ring structures. The electromechani-
cal coupling that the polarization (or electric field) gradient inducing
internal stress (or strain) is called the converse flexoelectric effect
[1–3]. In the last decade, both theoretical estimations [4–6] and
experimental measurements of flexoelectric coefficients [7,8] of vari-
ous materials [9–11] were carried out. Signal analysis and energy
generation of flexoelectric materials were recently evaluated and their
applications on rings and cylindrical shells were studied [12–15].
These studies presented a new flexoelectric sensing and energy gen-
eration mechanism, as compared with the conventional piezoelectric
sensing/energy harvesting technique. Static flexoelectric actuation
effects of a cantilever beam using an atomic force microscope
(AFM) probe were also evaluated [16]. This study focuses on flexo-
electric dynamic actuation and vibration control of ring shells.

Ring-type structures are widely used in engineering applica-
tions, such as gears, motors, stiffeners, etc. Natural frequencies
and mode shapes of free-floating rings have been thoroughly stud-
ied [17]. Piezoelectric sensors and actuators and their orthogonal
modal sensing and actuation effects of rings were analyzed
[18,19]. However, flexoelectric dynamic actuation characteristics
and vibration control of shell structures have not been evaluated
previously. Thus, this study is to investigate flexoelectric micro-
scopic actuation and control behaviors of ring structures. An inho-
mogeneous electric field generated by an AFM probe is used
to actuate a flexoelectric patch laminated on the ring structure.
With the flexoelectric membrane control force and bending con-
trol moment, steady-state dynamic responses and controllable dis-
placements of the ring are determined. Distribution of the electric
field gradient over the transverse direction of different patch
thickness is analyzed, followed by actuation effectiveness of the
actuator thickness, AFM probe radius, ring thickness, and ring

radius. The objective focuses on the flexoelectric actuator’s
microscopic behavior, i.e., the flexoelectric actuation mechanism
with an AFM probe is thoroughly evaluated. Furthermore, the
extremely inhomogeneous AFM probe’s electric field and the
drastic “buckling” behavior induced by the flexoelectric actuator
are investigated.

Ring Dynamics

Figure 1 illustrates an elastic ring shell laminated with a flexo-
electric actuator patch, where a3 and w, respectively, define the
transverse and the circumferential directions; R is the neutral sur-
face radius of the ring; h is the ring thickness, and b is the ring
width.

The flexoelectric actuator patch is much thinner than the ring,
and thus, its stiffness/mass effect to the ring dynamics is neglected.
Only the induced flexoelectric membrane control force Na

ww and
bending control moment Ma

ww (where a denotes the actuator-induced
component) are considered in the system dynamics. Dynamic equa-
tions of the ring with mechanical and actuation forces can be simpli-
fied from the dynamic equations of the double-curvature shell [20]

Fig. 1 Schematic diagram of the elastic ring
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where q is ring’s mass-density; h is the ring thickness; u3 is the
transverse displacement; uw is the circumferential displacement,
which is assumed small as compared with u3; F3 is the transverse
distributed mechanical force; and Nm

ww and Mm
ww are, respectively,

the elastic membrane force and bending moment per unit width,
where the superscript m denotes the mechanical component.
Note that the circumferential and transverse motions are coupled
and usually the transverse oscillation dominates. Combining
the actuator-induced components in ring equations, Love’s con-
trol operators [20] of the flexoelectric laminated ring can be
expressed as
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where La
w and La

3 are Love’s actuation or control operators induced

by the flexoelectric actuators, respectively, in the circumferential
and transverse directions. Periodical boundary conditions are
required for the ring shells, i.e., uw(wþ 2p)¼ uw(w) and u3(wþ 2p)
¼ u3(w). With the modal expansion method, ring’s dynamic dis-
placements can be expressed by adding all participating natural
modes multiplied by their respective modal participation factors
[17,20]

uwðw; tÞ ¼
X1
k¼2

gkðtÞUwkðw; tÞ (3a)

u3ðw; tÞ ¼
X1
k¼2

gkðtÞU3kðw; tÞ (3b)

where k is the mode number; gk is the modal participation factor;
U3k and Uwk are, respectively, the kth mode transverse and cir-
cumferential mode shape functions; gk denotes the temporal con-
tribution; and Uwk and U3k denote the spatial distributions of each
mode. When the ring is freely floating in space, it is observed that
k¼ 0 is a breathing mode; k¼ 1 is a rigid body mode, and a set of
transverse and circumferential modes occur when k � 2 [17,20].
The mode shape functions of the circumferential direction and the
transverse direction are

Uwk ¼ Ak sinðkw� uÞ (4a)

U3k ¼ Bk cosðkw� uÞ (4b)

where Ak and Bk are the modal amplitudes and u is an arbitrary
phase angle indicating an arbitrary ring orientation. Substituting
the modal expansions, i.e., Eqs. (3a) and (3b), into ring’s governing
equations, imposing the orthogonality of the mode shape functions
and introducing the modal damping, one derives the independent
modal equation [20]

€gk þ 2fkxk _gk þ x2
kgk ¼ F̂k (5)

where xk is the kth natural frequency; fk is the modal damping
ratio determined by an equivalent damping constant c and the nat-
ural frequency xk, i.e., fk¼ c/(2qhxk); and F̂k is the kth modal

force. For each mode of k � 2, there are two component natural
frequencies, i.e., xk1 and xk2. The component frequency xk1

denotes the transverse vibration, and xk2 denotes the circumferen-
tial vibration. Modal vibration amplitudes of the transverse com-
ponent modes and the circumferential ones are coupled at lower k,
i.e., k� 10, modes. By substituting the mode shape functions into
ring’s governing equations, the relationship between the modal
amplitude Ak of the circumferential mode and that Bk of the trans-
verse mode can be obtained [18,19]. For the oscillation at xk1 and
k� 10, amplitude ratio of transverse modes Bk is proportional to
circumferential mode’s amplitude Ak as ðBk=AkÞ � �k [17]. For
typical rings, xk2�xk1; thus, the circumferential vibration is not
considered and only the transverse xk1 remains as xk used in the
vibration control later.

The modal force can be divided into two components: the

modal force induced by the mechanical force F̂
m

k

� �
and that

induced by the flexoelectric actuator F̂
a

k

� �
, i.e., F̂k ¼ F̂

m
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a

k .

Let the transverse external mechanical force be expressed as F3,

see Fig. 1. The modal force components F̂
m

k and F̂
a

k are, respec-
tively, defined as [20]
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where Nk ¼
Ð 2p

0
ðU2

wk þ U2
3kÞRdw. Note that the flexoelectric actu-

ator patch is laminated from w�1 to w�2 on the ring. When the
mechanical force F3 and the actuation voltage /a are harmonic

with the excitation frequency x, i.e., F3 ¼ F�3ejxt, /aðtÞ ¼ /aejxt,

the steady-state modal response is also harmonic and F̂k ¼ F̂
�
kejxt,

where F̂
�
k indicates the magnitude of the kth modal force. Solving

the modal equation (5) with the modal excitation yields the
steady-state modal response
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where /* is the phase angle expressed as u� ¼ arctan
½ð2fkðx=xkÞÞ=ð1� ðx2=x2

kÞÞ�. With the modal response Eq. (7)
and the mode expansion expression Eq. (3b), the transverse
deflection induced by the mechanical force and the flexoelectric
actuation becomes

Fig. 2 A ring model of flexoelectric actuation
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The transverse vibration of the ring is affected by the flexoelec-
tric membrane control force and the bending control moment. For

the flexoelectric material, the actuation behavior depends on the
inhomogeneous electric field. Detailed actuation mechanism
induced by the flexoelectric patch driven by an AFM-induced elec-
tric field is introduced in the Flexoelectric Actuation section.

Flexoelectric Actuation

The ring model with the flexoelectric actuator and an AFM
probe is shown in Fig. 2, where r is the AFM probe radius; ha is
the flexoelectric patch thickness; and the flexoelectric patch is
laminated from w�1 to w�2 on the ring. According to the converse
flexoelectric effect, an inhomogeneous electric field is needed to
drive the flexoelectric actuator patch and this electric field is
induced by an AFM probe located at w ¼ w�0. The AFM probe
tip radius r is far less than the flexoelectric patch thickness and
the patch thickness is far less than the ring thickness, i.e.,
r	ha	h.

To generate the inhomogeneous electric field, an actuation volt-
age /a is applied between the AFM probe and the bottom surface
electrode of the flexoelectric patch. The electric potential / inside
the flexoelectric patch can be expressed based on Abplanalp’s
approximate [21]. Transforming the rectangular coordinates to the
polar coordinates yields the potential near the AFM probe

/ ¼ /arffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3 þ Rð Þ2 sin2 w� w�0

� �
þ r þ h

2
þ ha � a3 þ Rð Þcos w� w�0

� �
þ R2

	 
s (9)

where w�0 is the AFM probe location. In this study, the net electric field in the w direction is almost zero [16]; thus, only the transverse
electric field is considered here. The transverse electric field E3 can be obtained by differentiating the potential in the transverse
direction.

E3 ¼ �
@/
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Note that this electric field denotes the field near the AFM probe. For the area away from the AFM probe, the electric field is nearly
zero [10,16]. The circumferential stress induced by the electric field can be defined from the converse flexoelectric equation [16]
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where Ta
ww denotes the circumferential stress in the flexoelectric actuator patch. The flexoelectric membrane control force induced by

the electric field is obtained by integrating the stress along the actuator thickness
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Na
ww ¼

ðh
2
þha

h
2

Ta
wwda3 (12)

The flexoelectric control moment is calculated by integrating
the product of the actuation stress and the corresponding moment
arm (the distance between the local point and ring’s neutral layer)
as

Ma
ww ¼

ðh
2
þha

h
2

a3Ta
wwda3 (13)

With the explicit expressions of the membrane control force
and bending control moment induced by the flexoelectric actuator,
microscopic actuation behaviors and the flexoelectric actuation
responses with respect to various design parameters can be eval-
uated in the Parameter Studies section.

Flexoelectric Actuation Mechanism

and Vibration Control

With the geometric and material parameters listed in Table 1,
microscopic actuation behavior of the flexoelectric patch and the
modal control effects of the ring shell with various design parame-
ters are evaluated in this section. Since the converse flexoelectric
effect depends on the electric field gradient, this gradient is ana-
lyzed first, followed by a detailed evaluation of the flexoelectric
membrane control force and control moments. Steady-state maxi-
mal controllable displacements for various ring modes are ana-
lyzed with respect to actuator thickness, AFM probe radius, ring
thickness, and radius when the actuation voltage /a is set at a unit
voltage (since the actuation effect is proportional to the magnitude
of actuation voltage). Numerical calculations are implemented in
MAPLE software and verified by the TRAPZ integration method in
MATLAB.

Distribution of the Transverse Electric Field. With the
parameters in Table 1, the transverse distribution of the electric

field gradient defined in Eqs. (9) and (10) is analyzed first. By the
flexoelectric stress equation, i.e., Eq. (11), the induced stress in
the flexoelectric actuator is proportional to the gradient of the
transverse electric field. Figure 3 shows the electric field gradient
variation in the transverse direction underneath the AFM contact
point. Note that the vertical coordinate is set to start on the top
surface of the flexoelectric patch and points downward to the bot-
tom surface, i.e., from 0 to 50, 75, and 100 lm.

Figure 3 reveals that the electric field gradient is extremely high
at the AFM probe contact point (or thickness equals to zero). The
gradient in the lower part of the patch is relatively small as com-
pared with that of the upper surface. For example, the magnitude
of the electric gradient at the half thickness of the patch (thickness
equal to 25 lm) is only 7.92
 10�7% of the top surface (thickness
equal to zero). Equation (11) shows that the induced stress Ta

ww is
proportional to the electric field gradient; thus, the stress on the
upper part of the flexoelectric patch is much larger than the lower
part, indicating that the upper part is a dominant component of the
induced membrane control force Na

ww. Further analysis indicates
that the gradient distribution of various actuator thicknesses is
similar. The top portions of various actuator thicknesses near the
AMF probe are the same and the distribution follows the same
trend extending down as the actuator becomes thicker, i.e., 50, 75,
and 100 lm. The membrane force induced by the upper part of the
patch dominates the overall flexoelectric membrane control force.
Hence, the actuation effect increases little as the patch thickens
and this behavior is further validated later.

Microscopic Flexoelectric Actuation Behavior. Microscopic
actuation behavior of the flexoelectric patch is investigated here.
Due to the sharpness of the AFM probe-induced electric field gradi-
ent, the circumferential distributions of the membrane force is like
a spike, i.e., Dirac delta function. Figure 4 shows the circumferen-
tial distribution (i.e., from �p to þp of the ring with the AFM
probe placed at w�0 ¼ 0) of the induced flexoelectric membrane
force and control moment, respectively, marked on different scales.

Figure 4 indicates that the spatial distribution of the membrane
force is extremely inhomogeneous. Note that the insert picture in
Fig. 4 illustrates the force distribution in a very small region, i.e.,
from �5
 10�6 rad to 5
 10�6 rad, which illustrates that the

Fig. 3 The transverse distribution of the electric field gradient

Fig. 4 Circumferential distribution of the actuation

Fig. 5 The distribution of the circumferential loading induced
by actuator

Table 1 Parameters and properties of the ring model

Properties Values

Ring radius, R (m) 0.05

Ring width, b (m) 0.010

Ring thickness, h (m) 0.001

Young’s modulus of ring, Y (N/m2) 1.556
 109

Flexoelectric patch thickness, ha (lm) 50

AFM probe tip radius, r (nm) 50

AFM probe tip location, w�0 (rad) 0

Ring mass density, q (kg/m3) 1100

Poisson’s ratio, l 0.3

Flexoelectric constant, p12 (lC/m) 100

Actuator voltage, /a (V) 1

Starting position of patch, w�1 (rad) �p/40

Ending position of patch, w�2 (rad) p/40
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membrane force concentrates near the AFM location. The circum-
ferential distribution of bending moment is also observed in Fig. 4
with the moment scale on the left. The moment arm is constant in
the ring model; thus, the control moment is proportional to the
membrane control force and its distribution is similar. The actua-
tion effect, as indicated by the insert picture in Fig. 4, is limited in
a very small region, specifically, around 0.5 lm. The following
analysis focuses on this microscopic region and evaluates its
detailed microscopic actuation characteristic.

As discussed previously, the Love control operator in the

total flexoelectric actuation, i.e., F̂
a

k ¼ ð1=ðqhNkÞÞ
Ð w2

w1
ðLa

wUwk þ
La

3U3kÞRdw in Eq. (6b), has two actuation terms: the circumferen-
tial component La

w and the transverse component La
3 and these two

components are, respectively, investigated to evaluate the flexo-
electric microscopic actuation behavior near the AMF actuation
point. Comparing Eq. (6a) with Eq. (6b), the transverse Love
operator La

3 can be regarded as the transverse loading and the cir-
cumferential Love operator La

w be the circumferential loading

induced by the flexoelectric actuator. The characteristics of these
two induced loadings or control actions are, respectively, analyzed
next.

Flexoelectric Circumferential Actuation. As discussed earlier,
La

w has two components: one is induced by the flexoelectric mem-
brane force and the other by the bending control moment. The cir-
cumferential distributions of these two components and their total
effect are shown in Fig. 5.

Figure 5 reveals that in the region on the left of the w¼ 0, the
circumferential loading points rightward and that on the right
points leftward. In another word, the circumferential actuation
points to the AFM probe contact location. Figure 5 also shows
that the membrane force component dominates the total induced
circumferential actuation. This result is reasonable because the
membrane force mainly influences the circumferential vibrations,
while the bending moment mainly influences the transverse ones.
The induced microscopic circumferential actuation behavior is
shown in Fig. 6. The appearance of the AFM probe’s electric field
results in a circumferential control actuation draging the material
to where the probe locates.

Flexoelectric Transverse Actuation. The transverse oscillation
is mainly influened by the actuator-induced transverse Love
operator La

3 when the transverse mechanical input Lm
3 ¼ 0. The

distribution of the two transverse flexoelectric actuation compo-
nents, i.e., the membrane force component and control moment
component, together with their total effect, are plotted in Fig. 7.
As shown in Fig. 7, the induced actuation is downward in the
region closed to the AFM probe; the actuation is upward in the
region away from the AFM probe and the region farther away is
almost zero.

Detailed microscopic transverse actuation behavior is shown in
Fig. 8. The bending control moment plays a dominant role in the
transverse actuation, because the transverse deformation can be
considered as a drastic “folding” resembling a Dirac delta func-
tion at the AFM probe’s contact point, see Fig. 8. Note that this
sharp bending has been described as the buckling characteristic in
an earlier research on static deformation control of the cantilever
beam based on an AFM probe [16].

To analyze the characteristic of the flexoelectric patch under
the AFM control, La

w and La
3 should be considered as a whole. The

Fig. 6 Distribution of the induced circumferential loading

Fig. 7 The distribution of the transverse loading induced by
actuator

Fig. 8 Distribution of the induced transverse loading

Fig. 9 Circumferential distribution of the total induced flexo-
electric actuation near the AFM probe

Fig. 10 Maximal controllable displacement (k 5 2–6 ring
modes) with flexoelectric patch thickness
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schematic diagram of the total distributed flexoelectric actuation
on the ring is shown in Fig. 9.

When the ring is actuated by the flexoelectric actuator driven
by an AFM probe, a transverse deformation is induced as illus-
trated above. As the deformation occurs, the material is dragged
to where the AFM probe locates, while the ring would resist such
drag and results in a circumferential actuation. Thus, the overall
actuation effect of the flexoelectric patch on the ring can be
regarded as a drastic sharp bending effect within a small region.
Steady-state dynamic responses and controllable displacements of
the ring actuated by a flexoelectric actuator with various design
parameters are analyzed next.

Parameter Studies. The microscopic behavior of the flexo-
electric actuator indicates that the actuation only exists in a very
small region, i.e., near the AFM contact point. Thus, the patch
size has little influence on the overall actuation effect. A relatively
small patch, covers from �p/40 to p/40, is chosen for the dis-
placement control of rings. Other material and geometric proper-
ties are summarized in Table 1. To further evaluate the actuation
effect, dynamic responses and controllable displacements of the
elastic ring with a flexoelectric actuator are analyzed with respect
to design parameters, e.g., the flexoelectric patch thickness, AFM
probe radius, ring thickness, and ring radius here.

Flexoelectric Patch Thickness. The influence of flexoelectric
patch thickness on control of ring oscillations is analyzed first.
The flexoelectric-induced oscillation amplitudes (or the maximal
controllable displacements) driven by a steady-state unit voltage
are used to compensate ring’s vibration amplitudes, i.e., the larger
the actuator-induced magnitudes, the better the vibration control
effects on rings. The maximal flexoelectric-induced displacements
of k¼ 2–6 modes are evaluated with respect to patch thickness of
25 lm, 50 lm, 75 lm, and 100 lm in Fig. 10. (Recall that k¼ 1 is
a rigid-body ring mode.) Note that steady-state controllable dis-
placements of 2–6 modes are calculated when the actuation fre-
quency is, respectively, set to its natural frequency.

Figure 10 shows that when the actuator thickness increases, the
maximal induced displacement of k¼ 2–6 increases. The mem-
brane control force in the flexoelectric patch is enhanced as the
patch thickness increases. Furthermore, the induced control
moment is enhanced because the moment arm increases as the
flexoelectric actuator thickens.

Atomic Force Microscope Probe Radius. Earlier analysis indi-
cates that the AFM probe radius is a key factor influencing the
electric field gradient, membrane control force, and control
moments, consequently the vibration control effectiveness. The
influence of the AFM probe radius on the actuation effect is eval-
uated here. The maximal controllable displacement of k¼ 2–6
ring modes are evaluated with respect to probe radius of 25 nm,
50 nm, 75 nm, and 100 nm in Fig. 11.

As shown in Fig. 11, the maximal displacement decreases as
the radius of AFM probe increases from 25 nm to 100 nm.

Although the circumferential domain of the electric field grows
with probe radius, the maximal electric field gradient decreases,
which leads to the decrease of the maximal membrane force in the
flexoelectric actuator. The latter decrease outweighs the former
increases, as a result the actuation effect decreases as the AFM
probe radius increases from 25 nm to 100 nm.

Ring Thickness. After analyzing flexoelectric actuator charac-
teristics (e.g., the AFM probe and the flexoelectric patch), the
influence of the structural characteristics of the elastic ring is also
evaluated here. The maximal controllable displacements of
k¼ 2–6 modes are calculated with respect to ring thickness of
0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm in Fig. 12.

As shown in Fig. 12, the maximal ring displacement increases
as the ring thickness decreases. Keeping other parameters
unchanged, it is obvious that as a thicker ring becomes stiffer
resulting in higher natural frequencies. For a specific ring mode,
Fig. 12 shows that the relationship between the maximal control-
lable displacement and ring thickness is quadric. The bending
stiffness is proportional to the cubic of ring thickness and the
induced bending moment is proportional to the ring thickness.
Thus, the actuation effect, which is contributed by both factors, is
proportional to the square of ring thickness.

Ring Radius. The influence of ring radius on the actuation
effect is also evaluated. Maximal controllable displacements of
modes 2–6 with respect to ring radius of 25 mm, 50 mm, 75 mm,
and 100 mm are plotted in Fig. 13.

Figure 13 indicates that the maximal displacement for each
mode increases with the ring radius. With other parameters and
dimensions fixed, a ring with larger radius is softer than a smaller
radius one. Furthermore, as the ring radius increases, the natural
frequency decreases, and thus, the ring become relatively easier to
actuate and control. The maximal controllable displacement, for
each mode, respectively, is proportional to the ring radius as plot-
ted in Fig. 13. For two rings with different radius, they share the

Fig. 11 Maximal controllable displacement (k 5 2–6 ring
modes) with the radius of AFM probe

Fig. 12 Maximal controllable displacement (k 5 2–6 ring
modes) with the ring thickness

Fig. 13 Maximal controllable displacement (k 5 2–6 ring
modes) with the ring radius
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same bending stiffness and actuation force. Thus, it is reasonable
to deduce that the relationship between actuation effect and the
ring size is linear.

Conclusions

This study focused on the converse flexoelectricity-based
dynamic actuation characteristics and vibration control of elastic
rings. The converse flexoelectric effect-induced actuation depends
on an inhomogeneous electric filed implemented by an AFM
probe on a flexoelectric actuator patch. The distribution of the
induced stress in the flexoelectric actuator patch is extremely non-
uniform. The top surface induces the majority of the induced
membrane control force. Furthermore, the transverse distribution
of the electric gradient does not change with the actuator thick-
ness. In the circumferential direction, the distribution of actuation
forces resembles a Dirac delta function due to the inhomogeneous
electric field gradient induced by the AFM probe. The micro-
scopic behaviors of induced circumferential and transverse control
actions were evaluated, and the flexoelectric actuations were
applied to actuate a ring. With the basic dynamics of elastic rings,
flexoelectric vibration characteristics were studied and the maxi-
mal controllable displacements for five ring modes, i.e., k¼ 2–6,
were evaluated with respect to the actuator patch (thickness), the
AFM probe (tip radius), and the ring (thickness and radius). The
actuation effect is enhanced with a thicker flexoelectric actuator, a
smaller AFM probe radius, thinner ring shell, or larger ring radius.

Accordingly, this study provides a basic understanding of the
microscopic flexoelectric actuation behavior, including: (1) the
nonuniform distribution of actuation stress in the transverse direc-
tion and actuation forces in the circumferential direction and (2)
the equivalent action loadings and the drastic buckling induced by
the flexoelectric actuator. The analysis of flexoelectric actuator’s
microscopic behavior is not confined to ring structures. It serves
as a foundation for the flexoelectricity-based actuation and vibra-
tion control of other shell and nonshell structures.
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Nomenclature

Ak ¼ constant in circumferential mode shape function
b ¼ ring width

Bk ¼ constant in transverse mode shape function
c ¼ equivalent damping constant

E3 ¼ electric field strength in transverse direction

F3 ¼ transverse mechanical force

F̂k ¼ modal force

F̂
a

k ¼ actuator-induced modal force

F̂
m

k ¼ mechanical force-induced modal force

F̂
�
k ¼ magnitude of modal force

F�3 ¼ magnitude of transverse mechanical force

h ¼ ring thickness

ha ¼ flexoelectric patch thickness

k ¼ mode number

La
3 ¼ transverse love’s operator

La
w ¼ circumferential love’s operator

Ma
ww ¼ actuator-induced circumferential bending moment

Na
ww ¼ actuator-induced circumferential membrane force

r ¼ AFM probe radius

R ¼ ring radius

Ta
ww ¼ actuator-induced circumferential stress

u3 ¼ transverse displacement of ring

U3k ¼ transverse mode shape function

Uwk ¼ circumferential mode shape function

Zk ¼ modal damping ratio
a3 ¼ transverse coordinate
gk ¼ modal participation factor
q ¼ ring density
/ ¼ potential field

/a ¼ actuation voltage

u* ¼ lagging phase angle

w ¼ circumferential coordinate

w�0 ¼ AFM probe tip location

w�1 ¼ starting position of flexoelectric patch

w�2 ¼ ending position of flexoelectric patch

x ¼ excitation frequency
xk ¼ natural frequency of ring
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